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INTRODUCTION 

Soil salinity is a severe environmental hazard (Hillel 2000) that impacts the 
growth of many crops. Human-induced salinization is the result of salt stored in 
the soil profile being mobilized by extra water provided by human activities such 
as irrigation (Szabolcs 1989). Salinization problems continue to spread around 
the world at a rate of up to 2 million hectares a year, offsetting a good portion of 
the increased productivity achieved by expanding irrigation (Postel 1999). Since 
the irrigated acreage in Colorado is fairly stable, any increase in soil salinity will 
have a direct impact on the agricultural production of the state.  
 
Remotely sensed data has great potential for monitoring dynamic processes, 
including salinization. Remote sensing of surface features using aerial 
photography, videography, infrared thermometry, and multispectral scanners has 
been used intensively to identify and map salt-affected areas (Robbins and 
Wiegand 1990). Metternicht and Zinck (1997) provided an approach for mapping 
salt- and sodium-affected surfaces by combining digital image classification with 
field observation of soil degradation features and laboratory determinations in the 
semiarid valleys of Cochabamba, Bolivia. Multispectral data acquired from 
platforms such as Landsat, SPOT, and the Indian Remote Sensing (IRS) series 
of satellites have been found to be useful in detecting, mapping and monitoring 
salt-affected soils (Dwivedi and Rao 1992).  
 
Band ratios of visible to near-infrared and between infrared bands have proven to 
be better for identifying salts in soils and salt-stressed crops than individual 
bands (Craig et al., 1998 and Hick and Russell, 1990). Wiegand et al. (1994) 
carried out a procedure to assess the extent and severity of soil salinity in fields 
in terms of economic impact on crop production and effectiveness of reclamation 
efforts. Their results illustrate practical ways to combine image analysis 
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capability, spectral observations, and ground truth to map and quantify the 
severity of soil salinity and its effects on crops.  
 
Ghabour and Daels (1993) concluded that detection of soil degradation by 
conventional means of soil surveying requires a great deal of time, but remote 
sensing data and techniques offer the possibility for mapping and monitoring 
these processes more efficiently and economically. However, to assess the 
accuracy of the ability of satellite images to map and monitor salinity, it is 
necessary to compare them with field measurements of salinity. Our research 
uses remote sensing techniques for the purpose of determining the spatial and 
temporal (if multiple images are used from different dates) extent and magnitude 
of salt-affected areas. We have focused our initial studies in an area around La 
Junta, in the Arkansas Valley of Colorado. We have used extensive field data to 
validate the accuracy of the remote sensing techniques. 
 

METHODOLOGY 

The approach presented in this paper involves integrating remote sensing data, 
Geographic Information System (GIS), and spatial analysis to predict soil salinity. 
First, soil salinity data was collected in the field. The locations of the field 
samples were recorded on a Global Positioning System (GPS) unit, and a GIS 
map was generated. The collected soil salinity data was tied to the corresponding 
points on a georeferenced Ikonos satellite image. The soil salinity data are tested 
against the blue, green, red, and infrared bands of the satellite image as well as 
the normalized difference vegetation index (NDVI) and the infrared band divided 
by the red band (IR/R). Stepwise regression is used to determine the 
combination of bands that best relate to soil salinity. Ordinary least squares 
(OLS), spatial autoregressive (SAR), and spatial lag (SLAG) models are used as 
regression models to correlate the variables. The weighted average of the 
resultant matrix from the soil salinity data and the corresponding value from the 
satellite imagery is determined. 
 
We are also testing a second approach in which we assume that the crop 
condition is the main indicator of the presence and severity of saline soils. 
Elevated levels of soil salinity will affect the growth of most crops as well as their 
appearance. This can be detected remotely using satellite images. By enhancing 
the image, we can separate the crop condition into several classes. Using 
spatially referenced ground data collected at the study area, we can relate each 
class in the satellite image to a level of soil salinity. We can use these classes to 
create a signature file to classify other areas planted with the same crop.  
 
As part of this project we have collected soil samples from over 100 locations, 
with each sample being comprised of four depths (1, 2, 3, and 4 feet). These 
samples were analyzed using the HACH SIW Salinity Appraisal, and a composite 
EC e (the average of four sub samples at each 1 foot depth) was calculated for 
each sample. The calculated ECe values were compared to the EM-38 readings 
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that were taken at each sample point. After multiple iterations it was decided that 
a linear regression between the EM-38 vertical reading and the ECe provided the 
best match (Figure 1). From these data we developed the following regression 
model that converts EM-38 vertical readings into dS/m values:  
 

F = (SStemp-25)/10  
where: SStemp = temperature of soil sample measured in deg C 
A = 1-0.203462 F + 0.038223 (F 2) - 0.005554 (F 3) 
SSTc = A * SStemp (where: SSTc = temperature correction factor) 
EMVc = EMV * SSTc (where: EMVc = Temperature corrected EM-38 vertical 

reading) 
ECe = 0.0877 * EMVc + 1.8303  
 

  
Salinity Relationship ,  temp corrected to 25 c 

y = 0.0877x - 1.8303 
R 2  = 0.8353 
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Figure 1. Regression equation relating EMv and ECe. 
If equations with better correlations are developed to relate EM-38 readings to 
ECe, the work presented here can be updated to reflect these new equations. 
However the methodology and approach will remain the same. 

Analysis and Results 

The criteria for selecting the best model are that it should have the smallest 
Akaike Information Corrected Criteria (AICC), a small standard error, a p-value of 
each selected variable less than 0.05, and a p-value of Moran’s I of residuals 
larger than 0.05. For the combination of variables shown in Table 1, the OLS 
model using a combination of the blue band, infrared band, NDVI, and IR/R 
created the most accurate map of soil salinity for the given combination of 
variables. The SAR model was rejected because the p-value of the blue band 
was 0.3739. The SLAG model was also rejected because the p-values for both 
blue and infrared bands were larger than 0.05. For the OLS model, the p-value of 
Lagrange was 0 and the p-value of Moran’s I was greater than 0.05. The 
equation to predict soil salinity based on the results of the OLS model is:  
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OLS predicted soil salinity = 8.5537 + 0.0099 * blue band – 0.87 * infrared band – 
5.1164 * NDVI + 0.8918 * IR/R. 
 
Table 1. The output variable results of OLS, SAR, and SLAG models using blue, 
infrared, NDVI, and IR/R. 
Variable OLS SAR SLAG 
 R2 0.524 0.2484 0.2401 
 Residual 

Standard 
error 

1.5598 1.3299 1.3544 

Coefficient 8.5537 7.6347 3.3836 
p-value 0 0.0106 0.0276 

Intercept 

Standard 
Error 

1.7585 2.9651 1.527 

Coefficient 0.0099 0.0055 -0.0007 
p-value 0.0372 0.3739 0.868 

Blue 
band  

Standard 
Error 

0.0047 0.0062 0.0041 

Coefficient -0.0087 -0.006 -0.0008 
p-value 0.0001 0.0187 0.6815 

Infrared 
Band 

Standard 
Error 

0.0022 0.0025 0.0019 

Coefficient -5.1164 -6.8724 -8.9754 
p-value 0.0174 0.0042 0 

NDVI 

Standard 
Error 

2.1378 2.3808 1.8563 

Coefficient 0.8918 1.004 0.8289 
p-value 0.0113 0.0043 0.0068 

IR/R 

Standard 
Error 

0.3496 0.3486 0.3035 

Coefficient  0.9364  
p-value  0  

Lambda 

Standard 
Error 

 0.0344  

AICC 963.03 894.9011 900.4215 
Moran’s I (residuals) 0.1741   
p-value of Moran’s I 0.3814   
p-value (Lagrange) 0   
Likelihood p-value  0 0 
 
Figure 2 illustrates different ways of analyzing residuals, including a residuals 
histogram and graphs of the residuals versus the neighborhood number, 
predicted values, and the weight of residuals. The residuals histogram has a 
normal distribution which means that the residuals are spatially independent. The 
analysis of the residuals versus the neighborhood number, predicted values and 
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the weight of residuals show that there is no clear trend for any residual which 
confirms that the residuals are spatially independent. 
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Figure 2. Histogram of residuals and residuals versus neighborhood number, 
predicted values of soil salinity, and weight of residuals for the OLS when using 
the blue, infrared, NDVI, and IR/R. 
 
A second set of band combinations was evaluated and the results are shown in 
Table 2. For this set of band combinations the results show that the SAR model 
was the best model. The SLAG model was rejected because the p-value of the 
infrared band was larger than 0.05. The OLS model had a larger AICC than the 
SAR model, causing the OLS model to be rejected. The equation to predict soil 
salinity based on the results of the SAR model is: 
 
SAR Predicted soil salinity = 9.6914 – 0.0047 * infrared band – 8.3907 * NDVI + 
0.8743 * IR/R. 
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Table 2. The output variable results of OLS, SAR, and SLAG models using 
infrared, NDVI, and IR/R. 
Variable OLS SAR SLAG 
 R2 0.5157 0.2469 0.2413 
 Residual 

Standard 
Error 

1.5702 1.3295 1.3521 

Coefficient 11.7136 9.6914 3.1976 
p-value 0 0 0.0001 

Intercept 

Standard 
Error 

0.9092 1.8635 0.7829 

Coefficient -0.0052 -0.0047 -0.001 
p-value 0.0006 0.024 0.4136 

Infrared 
Band 

Standard 
Error 

0.0015 0.0021 0.0013 

Coefficient -7.6721 -8.3907 -8.7948 
p-value 0 0 0 

NDVI 

Standard 
Error 

1.767 1.6657 1.5215 

Coefficient 0.4692 0.8743 0.8566 
p-value 0.1037 0.0063 0 

IR/R 

Standard 
Error 

0.2873 0.3172 1.5215 

Coefficient  0.9354  
p-value  0  

Lambda 

Standard 
Error 

 0.0348  

AICC 965.3819 893.6044 898.3511 
Moran’s I (residuals) 0.1837   
p-value of Moran’s I 0.3713   
p-value (Lagrange) 0   
Likelihood p-value  0 0 
 
The histogram of residuals shown in Figure 3 has a distribution which is very 
close to normal, meaning that there is no correlation among the residuals and the 
residuals are spatially independent. The other three parts of the figure also 
confirm that there is no correlation among the residuals and that they are 
spatially independent.  
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Figure 3. Histogram of residuals and residuals versus neighborhood number, 
predicted values of soil salinity, and weight of residuals when using the SAR 
model for infrared, NDVI, and IR/R. 
 
As mentioned earlier, a second approach to detecting soil salinity that we have 
been testing is to assume that the crop condition is the main indicator of the 
presence and severity of saline soils. For this approach we selected a field with 
significant spatial variability in soil salinity (varying from less than 1 dS/m, which 
causes no crop loss, to over 7.5 dS/m, which inflicts severe corn crop loss) to be 
our calibration field. A field which fits this criterion is shown in Figure 4. The 
salinity of the field was determined using georeferenced EM-38 readings. This 
calibration field allowed us to separate as many salinity classes as possible. Nine 
different salinity levels were separated from the calibration field. To separate 
these levels, we spatially linked the satellite image with the soil salinity map 
derived from field readings. Using a combination of 3 bands (blue, green and 
near IR) in the satellite image, we selected several pixels that specifically 
corresponded to a soil salinity level. Reflectance values ranged from 200- 800, 
with high salinity points clustered around the 700 pixel value, moderate salinity 
points around the 400-500 pixel value and low salinity points around the 200 
pixel value. The classified image was re-coded based on the soil salinity map 
obtained previously using the EM-38. This re-coding was accomplished by 
spatially matching each class with the soil salinity values in the same area. This 
process yielded three classes that represent the severity of soil salinity. The 
classes were low (0-3.8 dS/m), moderate (3.8-5.8 dS/m) and high (>5.8 dS/m). 
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Figure 4. Soil salinity map generated from field data vs. map generated from 
satellite image. 
 
To examine the accuracy of the satellite generated map, a comparison was done 
between the ground data map and the re-coded satellite image. The histograms 
in Figure 5 show this comparison. Fifty five percent of the field-data generated 
map had soil salinity levels of less than 3.8 dS/m. In the satellite map, 62% of the 
field registered no loss, indicating salinity levels of less than 3.8 dS/m. Areas 
where soil salinity levels ranged from 3.8 to 5.8 are considered moderate loss 
areas and covered 42% of the field in the map generated by the field data. In the 
satellite image, moderate loss areas comprised 25% of the field area. The 
highest crop loss falls within areas that have soil salinity of over 5.8 dS/m. These 
areas encompassed 3% of the field in the field-data generated map. In the 
satellite image 13% of the field is shown to have severe loss. 
 
To validate this approach, the soil salinity was mapped using an EM-38 in 
another corn field that falls within the calibrated image. In this validation field, 64 
EM-38 soil salinity measurements were taken. A map was generated that shows 
the severity of the soil salinity in the validation field expressed in terms of low (0-
3.8 dS/m), moderate (3.8-5.8 dS/m) and high (>5.8 dS/m) levels. 

 
Table 3 compares the soil salinity map generated from the satellite image with 
the soil salinity map generated from the EM-38 measurements for the validation 
field. The comparison shows there was less error when mapping the low salinity 
areas, which was expected because of the uniformity of the crop in the low 
salinity areas. No errors were generated when mapping the high salinity zones. 
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Figure 3. Histogram developed from the maps generated from the EM-38 and the 
satellite image. 
 

Table 3. Percentage comparisons of salinity levels shown in the two maps. 
Class Ground Data  

(EM-38) 
From Satellite 

Image 
Low salinity 72.53 % 66.17 % 
Moderate 22.05 % 21.53 % 

High salinity 5.42 % 12.29 % 
 
The over estimation of the high salinity area was because of the existence of a 
road on the west edge of the field which was classified as a high salinity area 
because it has no vegetation. Such errors could be eliminated by masking roads 
and canals as well as bare soil areas (such as barns or feedlots) in the classified 
image. 
 

 
Figure 4. Histogram comparison of the salinity map generated from field data vs. 
the satellite image map. 

SUMMARY AND CONCLUSION 

The results presented in this paper show the feasibility of using remote sensing 
data to estimate soil salinity for corn fields. Compared to the labor, time, and 
money invested in field work devoted to collecting soil salinity data, the 
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availability and ease of acquiring satellite imagery is very attractive. The results 
of our two approaches were:  

1) Stepwise regression yields the best combinations of bands to use 90% of 
the time. The SAR model using the infrared, NDVI, and IR/R combination 
was evaluated to be the best of all the tested models as it satisfied all the 
selection criteria and has the smallest AICC value.  

2) The approach using crop condition as the main indicator of saline soils 
has worked very well in our study area. The histogram comparison in 
Figure 4 shows that the calibrated satellite image matched the data 
collected with the EM-38 with an overall error of less than 15%.  
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