

TABLE OF CONTENTS

INTRODUCTION TEST OBJECTIVES AND PROCEDURES 1 2001 STATEWIDE GROWING CONDITIONS 2 **RESULTS: ALFALFA PERFORMANCE TESTS NORTHEASTERN KANSAS** Powhattan, Brown County Table 1 4 Manhattan, Riley County Table 2 5 Limited Irrigation SOUTHEAST KANSAS Mound Valley, Labette County Table 3 6 **SOUTH CENTRAL KANSAS** Hutchinson, Reno County **SOUTHWESTERN KANSAS** Garden City, Finney County Table 5 8 Irrigated **APPENDIX** Electronic Access and University Research Policy......back cover

2001 KANSAS ALFALFA PERFORMANCE TESTS

INTRODUCTION

TEST OBJECTIVES AND PROCEDURES

The Kansas Agricultural Experiment Station established an official alfalfa performance testing program in 1980 to provide Kansas growers with unbiased performance comparisons on alfalfa varieties marketed in the state. Each year, private companies are asked to enter varieties voluntarily at the locations slated for establishment that year. Announcements and entry forms are mailed to private companies in June for entry in fall-seeded tests. Companies enter varieties of their choice and pay entry fees to cover part of the costs of conducting the tests. Most tests are planted in mid-August or September; however, Southeast Kansas test usually is planted in the Individual tests are conducted for a minimum of 3 years. New tests typically are established during the final production year of the previous test.

The Manhattan test was established as a "no insecticide" test to evaluate variety differences in resistance and/or tolerance to infestations of insect pests such as alfalfa weevil and potato leafhopper. The susceptible check variety, Ranger, was included as a basis for comparison. Other tests are treated with insecticide to control weevils, armyworms, or other pests that might decimate the crop, but rarely for leafhoppers.

Descriptive information is presented with the results for each test. This information, including soil type, establishment methods, fertilization, pest control, irrigation, harvest dates, and growing conditions unique to that location, can help explain test and/or variety performance.

FORAGE YIELDS were estimated by harvesting four replications of each variety with a plot harvester. The amount of forage produced from a specific area (35-80 ft²) was weighed, and a subsample was taken to determine moisture content. This information was used to convert the plot weights to tons of dry matter per acre for each cutting, the season total, and the total for each previous season as presented in Tables 1-6.

The forage yield over the lifetime of a particular test is presented as the total tons of dry matter produced per acre, as the total tons of 15% moisture hay, and as a percentage of the test average.

Each table is separated into three sections. The first lists released cultivars that are generally available on the seed market or soon will be. The second section includes experimental cultivars that were entered in the test before being released for sale. These experimental lines often represent an earlier generation of seed than that used for the released cultivars. The third section includes summary statistics unique to that test.

At the bottom of each column, the <u>Least Significant Difference</u> (LSD) is listed at the 0.05 and 0.20 levels. These values indicate how large a difference is needed to be confident that one variety is superior to another. Differences between varieties that are equal to or greater than the 0.05 LSD have only a 1 in 20 chance of being due to chance or error. Differences equal to or greater than the 0.20 LSD have a 1 in 5 chance of being caused by chance or error.

The <u>C</u>oefficient of <u>V</u>ariability (CV) provides an estimate of the consistency of the results of a particular test. In these tests, CV's below 10% generally indicate reliable, uniform data, whereas CV's of 10-15% are not uncommon and generally indicate that the data are acceptable for rough comparisons. Tests with CV's over 15% may still be useful, but variety comparisons lack precision.

The Mean Coefficient of Variability (MCV) is similar to the CV in that it serves as an indicator of test precision. The MCV is calculated by dividing the 0.05 LSD by the test mean (average) and multiplying by 100. The MCV reveals the percent difference required to detect differences between varieties with 95% confidence. Many alfalfa breeders and testers agree that tests with MCV values greater than 10% are of little benefit.

2001 STATEWIDE GROWING CONDITIONS

The 2001 season was similar to last year, with an extended period of hot, dry weather (Figures 1 and 2). The primary difference was that this stressful period occurred in July and August in 2001 rather than in August and September as it did in 2000. The first two harvests were delayed slightly by heavy rains in some areas, but were still relatively early compared to the 5-year average (Figure 3). The third and fourth harvests lagged behind last year's, following the 5-year average more closely. (From Crop-Weather reports, Kansas Agricultural Statistics, Topeka).

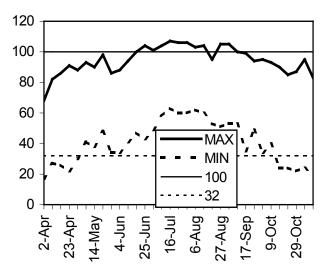


Figure 1. 2001 Kansas weekly maximum and minimum temperatures.

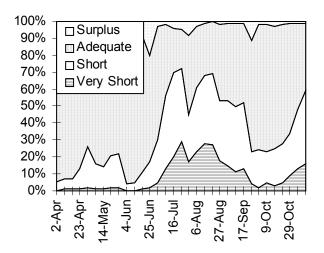


Figure 2. Status of statewide topsoil moisture.

Statewide average yields dropped, but total alfalfa hay production increased compared to last year. The November 9 Kansas Agricultural Statistics report predicted a 0.1 ton per acre decrease in average yield from 4.1 tons per acre in 2000 to 4.0 tons per acre in 2001. Total alfalfa acreage harvested in 2001 was up by 50,000 acres from that in 2000 to 950,000 acres. The higher harvested acreage resulted in an increase in total alfalfa hay production from 3.7 million tons in 2000 to 3.8 million tons in 2001.

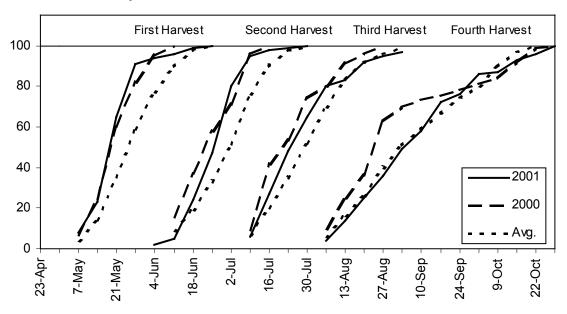


Figure 3. Progress of statewide alfalfa harvest.

A wide range of insect pests was found in alfalfa fields in 2001. Alfalfa weevils appeared in early April in southeast and south central fields. Most fields in southern Kansas had been sprayed for this pest by the end of April. By early May, reports of weevils had been received from most of Beet armyworm and variegated the state. cutworm moths were trapped from late April to early June. However, few fields were treated for these pests. Large numbers of beet armyworm larvae were found in some fields later in the season. Garden webworm populations increased rapidly in mid to late summer. A number of fields in south central, southeast, and eastern Kansas required treatment. Several fields in eastern Kansas sustained severe damage from this pest. Garden webworm populations remained high, sometimes causing problems in new seedings of Spotted alfalfa aphid alfalfa in September. appeared in some fields in August. Large numbers of grasshoppers, both differential and two-striped, damaged field margins beginning in July and continuing through August. Cooperative Economic Insect Survey reports, Kansas Department of Agriculture and Kansas Insect Newsletter, KSU Extension Entomology).

Diseases appeared to cause fewer problems for the 2001 alfalfa crop than in typical years. As usual, spring black stem was present early in the season. In mid-June the plant diagnostic clinic received several samples of seedling alfalfa with phytophthora root rot. Symptoms included stunting, wilting, yellowing, and purpling of the foliage. Heavy rains in many parts of Kansas in early June were ideal for infection by the free-swimming zoospores of this fungus. (From Plant Disease Survey Reports, Kansas Department of Agriculture and Plant Disease Alerts, KSU Department of Plant Pathology).

VARIETY CHARACTERIZATION

For variety selection, producers should consider the performance of a variety in each of the current tests where it appears, its performance over time and locations relative to familiar or check varieties, and the disease and insect resistance characteristics that are potentially important in their situation.

Tables 1-5 contain updated yield data from individual tests currently in progress. First-season yields for a spring-planted test are often more variable than yields in subsequent years. Season totals are important, but yield distribution during the season may vary among varieties. Examine yields from individual cuttings to determine if differences in yield distribution exist. Yield totals over many years provide the best measure of variety performance over time.

The appendices provide additional descriptive and Appendix 1 contains fall contact information. dormancy, disease resistance, and insect resistance ratings. These ratings were obtained primarily from the annual 'Fall Dormancy & Pest Resistance Ratings for Alfalfa Varieties' pamphlet published by the Alfalfa Council. That report summarizes information submitted by developers of alfalfa varieties as part of the variety registration process. The Association of Official Seed Certifying Agencies (AOSCA) National Alfalfa Variety Review Board (NAVRB) reviewed the ratings before they were published. Companies submitting varieties for the tests provided ratings for some unregistered varieties. Appendix 2 contains marketing contacts for released varieties included in the 2001 Kansas Alfalfa Performance Tests.

Fall dormancy values are based on the fall canopy height measured in Minnesota. Dormancy values generally are related to the speed of regrowth. The rapid regrowth types have higher values, and the slower regrowth types have lower values.

Table 1. Northeast Kansas, Powhattan Alfalfa Performance Test, Seeded August 1998.

	Forage Yield												
tons/acre													
				Ory Matt	er			Total,	00-01 Total,				
			2001			2000	00-01	15%	% of				
NAME	5-23	6-27	7-30	9-5	Total	Total	Total	Moist.	Mean				
RELEASED CULTIVARS													
DK 141	2.43	1.60	1.47	1.35	6.85	4.04	10.89	12.81	105				
WL 232 HQ	2.30	1.71	1.44	1.22	6.68	3.98	10.66	12.54	103				
WL 325 HQ	2.21	1.65	1.51	1.31	6.67	3.94	10.61	12.48	102				
Dagger+EV	2.30	1.62	1.33	1.30	6.55	4.05	10.60	12.47	102				
Pioneer 53V08	2.29	1.70	1.38	1.36	6.73	3.84	10.57	12.44	102				
Magnum V	2.42	1.64	1.51	1.22	6.79	3.74	10.53	12.39	102				
TMF 4464	2.28	1.75	1.46	1.28	6.77	3.75	10.52	12.38	101				
Geneva	2.23	1.57	1.39	1.26	6.44	4.03	10.47	12.32	101				
Pioneer 54H55	2.33	1.56	1.33	1.20	6.42	4.01	10.43	12.27	101				
ABT350	2.20	1.75	1.49	1.30	6.74	3.67	10.41	12.25	100				
Yielder	2.05	1.70	1.55	1.28	6.58	3.78	10.36	12.19	100				
Amerigraze 401+Z	2.27	1.68	1.40	1.31	6.66	3.69	10.35	12.18	100				
DK 142	2.33	1.54	1.34	1.29	6.49	3.85	10.34	12.16	100				
Gold Plus	2.19	1.56	1.41	1.22	6.37	3.96	10.33	12.15	100				
Depend+EV	2.20	1.63	1.37	1.23	6.44	3.87	10.31	12.13	99				
ProGro	2.18	1.67	1.35	1.24	6.45	3.86	10.31	12.13	99				
Cimarron 3i	2.42	1.45	1.34	1.33	6.53	3.76	10.29	12.11	99				
Spur	2.19	1.51	1.31	1.31	6.31	3.97	10.28	12.09	99				
WL 324	2.31	1.59	1.30	1.19	6.39	3.86	10.25	12.06	99				
Ace	2.30	1.53	1.25	1.22	6.30	3.91	10.21	12.01	98				
Emperor	2.14	1.56	1.44	1.23	6.37	3.78	10.15	11.94	98				
Affinity+Z	2.19	1.55	1.31	1.24	6.29	3.62	9.91	11.66	96				
Perry	2.40	1.49	1.32	1.07	6.28	3.55	9.83	11.56	95				
Kanza	2.10	1.49	1.35	1.14	6.08	3.72	9.80	11.53	95				
EXPERIMENTAL STRAINS	2.10	1.10	1.00		0.00	0.72	0.00	11.00					
ZC9751A	2.31	1.63	1.44	1.26	6.64	4.09	10.73	12.62	103				
C304	2.30	1.54	1.38	1.36	6.59	4.10	10.73	12.58	103				
C230	2.38	1.57	1.47	1.33	6.75	3.88	10.63	12.50	103				
4G70	2.09	1.70	1.47	1.23	6.49	3.00 4.11	10.60	12.47	103				
	2.09			1.23					98				
ZH9731H		1.61	1.40		6.54	3.67	10.21	12.01					
ZC9741A	2.10	1.63	1.41	1.19	6.33	3.79	10.12	11.91	98				
ZC9740A	2.16	1.62	1.35	1.17	6.30	3.76	10.06	11.84	97				
SUMMARY STATISTICS	0.05	4.04	4 40	4.05	0.54	0.00	40.07	40.00	400				
Average	2.25	1.61	1.40	1.25	6.51	3.86	10.37	12.20	100				
LSD(0.05)	0.20	NS	NS	NS	0.39	0.23	0.67	0.79	6				
LSD(0.20)	0.13	0.12	0.10	NS	0.26	0.12	0.44	0.52	4				
CV(%)	6.46	8.10	8.43	8.97	4.32	5.14	3.34	3.34	3				
MCV(%)	8.89	NS	NS	NS	5.99	5.96	6.46	6.46	6				

LOCATION: Northeast Kansas Site: Cornbelt Experiment Field County: Brown Town: Powhattan Soil: Grundy silty clay loam ESTABLISHMENT: 9/2/98; RCBD, 4 reps Plots 5'x20'; 4'x20' harvested 15 lb. seed/acre	2001 FERTILIZATION: None in 2001 2001 PEST CONTROL: Weevil numbers were held in check by the first cutting.	2001 CONDITIONS: Alfalfa weevil caused minimal injury prior to the first cutting. Webworms caused considerable damage prior to the July 30 harvest. Rainfall was below normal for April, May, and August. Rains in June and July came at favorable times and in adequate amounts to produce good yields.
---	--	---

Table 2. Northeast Kansas, Manhattan Alfalfa Performance Test, Seeded May 1999.

Limited Irrigation

					Forage Yield									
	Plant								tons/a	cre				99-01
	Height	Leaf I	Hopper	Injury				Dry	Matter				Total,	Total,
	inches	Ra	ating 1-	5*		2001 2000							15%	% of
NAME	7-26	6-13	7-26	Ave.	5-10 6-13 7-26 9		9-14	Total	Total	Total	99-01 Total	Moist.	Mean	
RELEASED CULTIVA	ARS													
645-II	19	1.3	2.8	2.0	1.53	1.66	2.37	1.11	6.67	8.58	1.97	17.22	20.26	110
NetYield500	20	1.8	3.3	2.5	1.53	1.67	2.26	1.17	6.62	8.59	1.91	17.12	20.14	109
Abilene+Z	20	1.0	2.8	1.9	1.59	1.88	2.46	1.31	7.24	7.74	1.99	16.97	19.96	108
Kanza	22	1.8	3.0	2.4	1.49	1.68	2.27	1.44	6.88	7.76	2.23	16.87	19.85	107
Dagger+EV	21	1.5	3.0	2.3	1.54	2.11	2.27	1.42	7.34	7.56	1.73	16.63	19.56	106
Jade II	21	2.0	3.0	2.5	1.54	1.65	2.14	1.20	6.52	7.67	1.99	16.18	19.04	103
Feast+EV	20	1.0	3.0	2.0	1.51	1.70	1.96	1.08	6.26	7.41	2.11	15.78	18.56	101
ABT 400SCL	21	1.5	3.3	2.4	1.44	1.52	2.17	1.14	6.26	7.53	1.95	15.74	18.52	100
Pioneer 54H69	23	1.0	2.0	1.5	1.42	1.75	1.89	1.12	6.17	7.56	1.97	15.70	18.47	100
Defense+EV	19	1.0	3.0	2.0	1.39	1.80	2.08	1.14	6.40	7.00	1.99	15.39	18.11	98
Ameriguard 302+Z	21	1.3	2.5	1.9	1.45	1.59	2.10	1.13	6.26	7.32	1.80	15.38	18.09	98
Perry	22	1.0	2.8	1.9	1.39	1.44	1.98	1.12	5.93	7.25	1.71	14.89	17.52	95
DK 131HG	22	1.0	2.0	1.5	1.31	1.37	1.92	1.19	5.79	6.75	1.93	14.47	17.02	92
Geneva	20	1.5	3.0	2.3	1.25	1.34	1.69	0.94	5.21	7.25	1.94	14.40	16.94	92
Ranger	20	2.5	4.3	3.4	1.28	1.32	2.01	1.06	5.66	6.39	1.54	13.59	15.99	87
EXPERIMENTAL STI	RAINS													
W326	20	2.0	4.0	3.0	2.02	1.96	2.47	1.33	7.78	7.54	1.96	17.28	20.33	110
ZC9650	21	1.0	3.0	2.0	1.77	1.75	2.41	1.18	7.11	7.47	1.96	16.54	19.46	105
ZG9840	19	1.5	3.3	2.4	1.74	1.65	1.94	1.07	6.40	7.97	1.96	16.33	19.21	104
ZC9842A	20	1.0	2.8	1.9	1.39	1.72	2.05	1.07	6.23	7.67	2.02	15.92	18.73	101
ZC9851A	21	1.0	2.3	1.6	1.41	1.68	2.02	1.18	6.29	7.79	1.76	15.84	18.64	101
ZC9841A	19	1.0	2.5	1.8	1.40	1.70	2.17	1.04	6.31	7.36	1.90	15.57	18.32	99
ZC9840A	19	1.0	2.5	1.8	1.35	1.63	1.79	1.18	5.95	7.70	1.75	15.40	18.12	98
ZH9844H	19	1.0	2.0	1.5	1.40	1.60	1.87	1.21	6.07	6.97	2.17	15.21	17.89	97
KS224	19	2.0	3.5	2.8	1.24	1.66	1.78	1.07	5.74	6.88	1.59	14.21	16.72	91
ZH9841H	21	1.0	2.0	1.5	1.22	1.37	1.67	0.96	5.22	6.70	1.83	13.75	16.18	88
SUMMARY STATIST	ICS													
Average	20	1.3	2.9	2.1	1.46	1.65	2.07	1.15	6.33	7.46	1.91	15.70	18.47	100
LSD(0.05)	2	0.5	0.7	0.4	0.34	0.24	0.48	0.20	0.91	0.57	0.19	1.83	2.15	12
LSD(0.20)	1	0.3	0.5	0.3	0.22	0.16	0.31	0.13	0.59	0.29	0.15	1.19	1.40	8
CV(%)	8	24.1	17.9	13.9	-			12.38		6.43	8.60	5.25	5.25	5
MCV(%)	11	33.9	25.3	19.6				17.45		7.58	10.11	11.66	11.66	12

^{*}NAAIC Leaf Hopper Resistance Ratings:

- 1 No apparent injury
- 2 Very minor stunting and yellowing
- 3 Moderate stunting, yellowing is evident on 20-40% of leaves
- 4 Significant injury; plants show significant stunting with yellowing on 40-60% of leaves
- 5 Severe injury; plants show severe stunting, yellowing or reddening evident on 60-100% of leaves

LOCATION: Northeast Kansas	2001 FERTILIZATION:	2001 CONDITIONS:
Site: Ashland Research Farm County: Riley	None	Alfalfa weevils caused moderate damage to first harvest forage.
Town: Manhattan		Leafhoppers caused no damage on first
Soil: Haynie very fine sand	2001 PEST CONTROL:	and fourth harvest forage. Irrigation (~2 inches each) was applied twice after
ESTABLISHMENT:	Malathion applied 2 weeks prior to	2nd, 3rd, and 4th harvests. First harvest
5/24/99; RCBD, 4 reps	1st harvest to control alfalfa weevils.	was made at 20% bloom, others at
Plots 3'x15'; 3'x12' harvested 15 lb. seed/acre	weeviis.	10%. Plot damage due to gophers increased variability.

Table 3. Southeast Kansas, Mound Valley Alfalfa Performance Test, Seeded April 1998.

	Forage Yield													
	tons/acre													
				Dry	Matter				Total,	Total,				
NAME			001		2000	1999	1998	98-01	15% Maiat	% of Mean				
NAME	5-9	6-18	7-13	Total	Total	Total	Total	Total	Moist.	Wicaii				
RELEASED CULTIVARS														
Cimarron 3i	1.27	1.90	0.83	4.00	6.28	5.36	2.15	17.79	20.93	104				
Pioneer 54H55	1.30	1.91	0.89	4.10	6.43	4.72	2.18	17.43	20.51	102				
6420	1.27	1.98	0.93	4.18	6.15	5.01	2.08	17.42	20.49	102				
WL 324	1.27	1.94	0.85	4.06	6.16	4.95	2.25	17.42	20.49	102				
Amerigraze 401+Z	1.31	1.98	0.84	4.13	6.05	5.06	2.12	17.36	20.42	102				
WL 326 GZ	1.31	1.94	0.83	4.08	6.35	4.76	2.17	17.36	20.42	102				
ProGro	1.31	1.95	0.90	4.16	6.17	4.83	2.19	17.35	20.41	102				
DK 141	1.36	1.96	0.84	4.16	6.14	4.79	2.25	17.34	20.40	102				
Emperor	1.31	1.83	0.84	3.99	6.25	4.80	2.19	17.23	20.27	101				
Stamina	1.28	1.93	0.80	4.02	6.02	5.05	1.98	17.07	20.08	100				
Perry	1.41	1.91	0.81	4.13	5.72	5.04	2.15	17.04	20.05	100				
631	1.28	1.84	0.86	3.98	5.93	4.91	2.21	17.03	20.04	100				
Kanza	1.27	1.83	0.93	4.03	6.03	4.66	2.19	16.91	19.89	99				
DK 142	1.38	1.85	0.83	4.06	5.89	4.85	2.11	16.91	19.89	99				
Sendero	1.13	1.87	0.89	3.88	5.96	4.84	2.19	16.87	19.85	99				
Spur	1.32	1.79	0.86	3.97	5.86	4.72	1.97	16.52	19.44	97				
Gold Plus	1.23	1.79	0.81	3.84	5.82	4.61	2.09	16.36	19.25	96				
WL 325 HQ	1.25	1.90	0.83	3.99	5.80	4.38	2.03	16.20	19.06	95				
EXPERIMENTAL STRAINS														
ZC9751A	1.31	2.09	0.95	4.36	6.11	4.92	2.12	17.51	20.60	103				
CW 74013	1.26	1.89	0.87	4.02	6.04	4.83	2.20	17.09	20.11	100				
ZC9651	1.35	1.85	0.94	4.15	6.02	4.77	2.07	17.01	20.01	100				
CW 74031	1.33	1.89	0.92	4.14	5.97	4.78	2.12	17.01	20.01	100				
CW 74034	1.23	1.92	0.95	4.09	6.01	4.83	2.00	16.93	19.92	99				
ZC9650	1.21	1.83	0.95	3.99	6.01	4.80	2.10	16.90	19.88	99				
CW 5426	1.27	1.94	0.93	4.14	5.83	4.85	2.04	16.86	19.84	99				
ZC9750A	1.28	1.81	0.96	4.05	6.05	4.72	2.03	16.85	19.82	99				
CW 6408	1.35	1.83	0.88	4.07	5.93	4.72	2.04	16.76	19.72	98				
CW 75044	1.22	1.86	0.96	4.04	5.94	4.63	2.00	16.61	19.54	98				
SUMMARY STATISTICS														
Average	1.29	1.89	0.88	4.06	6.03	4.83	2.11	17.03	20.04	100				
LSD(0.05)	0.11	NS	0.08	0.22	0.31	0.29	0.14	1.09	1.28	6				
LSD(0.20)	0.06	NS	0.05	0.14	0.16	0.23	0.11	0.71	0.84	4				
CV(%)	5.91	6.61	6.17	3.87	4.31	5.12	5.73	2.35	2.35	2				
MCV(%)	8.31	NS	8.69	5.44	5.07	6.02	6.74	6.40	6.40	6				

LOCATION: Southeast Kansas

Site: Southeast Ag. Research Center

County: Labette
Town: Mound Valley

Soil: Parsons silty clay loam

ESTABLISHMENT:

4/14/98; RCBD, 4 reps Plots 5'x30'; 3'x20' harvested

15 lb. seed/acre

2001 FERTILIZATION:

20-50-200 lb/a of N-P2O5-K2O on March 9

2001 PEST CONTROL:

Lorsban applied on April 12 to control alfalfa weevils.

2001 CONDITIONS:

Favorable temperatures and rainfall in April, May, and June resulted in good first and second harvest yields. Dry conditions in July and August combined with a webworm attack in August limited third-harvest yields and subsequent regrowth. Insufficient regrowth occurred to allow additional harvests.

Table 4. South Central Kansas, Hutchinson Alfalfa Performance Test, Seeded Sept. 1999.

							Forag	e Yield			
	PI:	ant Heig	nht				tons/acr	е			00-01
	1 10	inches			2(Dry I 001	Matter	2000	00-01	Total, 15%	Total, % of
NAME	5-22	6-20	7-19	5-22	6-20	7-19	Total	2000 Total	00-01 Total	Moist.	
RELEASED CULTIVARS											
WL 327	23	21	16	1.99	1.49	0.95	4.43	5.89	10.32	12.14	110
Magnum V	22	21	17	1.92	1.42	0.94	4.28	5.66	9.94	11.69	106
Aspire	23	21	17	1.64	1.33	1.09	4.05	5.65	9.70	11.41	103
6420	22	20	14	2.15	1.46	0.97	4.57	5.12	9.69	11.40	103
Pioneer 54Q53	23	21	16	1.84	1.42	0.96	4.22	5.41	9.63	11.33	103
Kanza	23	20	19	1.86	1.43	1.14	4.43	5.16	9.59	11.28	102
DK 142	22	21	16	1.90	1.48	0.99	4.38	5.15	9.53	11.21	101
ABT350	22	20	17	1.98	1.52	1.10	4.60	4.90	9.50	11.18	101
Forecast 1001	23	21	16	1.83	1.43	0.95	4.21	5.28	9.49	11.16	101
WL 232 HQ	20	20	15	1.99	1.48	0.98	4.45	4.94	9.39	11.05	100
TMF 4464	23	21	16	1.96	1.49	1.00	4.44	4.94	9.38	11.04	100
Dagger+EV	24	20	16	1.93	1.44	0.98	4.35	5.01	9.36	11.01	100
Cimarron SR	23	21	15	2.12	1.37	0.97	4.46	4.88	9.34	10.99	99
Perry	24	21	14	2.18	1.42	0.88	4.48	4.77	9.25	10.88	99
Abilene+Z	22	21	15	1.85	1.54	0.97	4.36	4.87	9.23	10.86	98
DK 140	23	21	16	1.79	1.51	1.00	4.30	4.88	9.18	10.80	98
Cimarron 3i	25	20	16	1.97	1.28	0.91	4.15	4.96	9.11	10.72	97
Award	22	20	15	1.75	1.45	0.93	4.12	4.86	8.98	10.56	96
Macon	21	19	15	1.66	1.41	0.93	3.99	4.37	8.36	9.84	89
EXPERIMENTAL STRAINS											
ZC9650	23	20	16	1.92	1.43	0.95	4.29	5.25	9.54	11.22	102
ZC9850A	20	19	13	1.98	1.55	0.93	4.45	4.92	9.37	11.02	100
SUMMARY STATISTICS											
Average	22	20	16	1.91	1.44	0.97	4.33	5.06	9.39	11.05	100
LSD(0.05)	2	NS	2	0.19	0.13	0.13	0.26	0.46	0.80	0.94	9
LSD(0.20)	2	NS	1	0.13	0.09	0.09	0.17	0.23	0.52	0.61	6
CV(%)	8	7	10	7.16	6.57	9.57	4.30	7.64	4.52	4.52	5
MCV(%)	11	NS	15	10.13	9.29	13.52	6.06	9.02	8.52	8.52	9
LOCATION: South Central Kans	sas	2001	FERTIL	IZATION			001 COI				
Site: South Central Experime	ent Field	75-4	0-40 pric	or to plant	ing		Good mo	isture di	uring the	winter n	nonths

County: Reno Town: Hutchinson Ost silt loam Soil:

ESTABLISHMENT:

9/14/99; RCBD, 4 reps

Plots 5'x20', 3'x20' harvested

18 lb. seed/acre

2001 PEST CONTROL:

Sinbar applied January 24 for weed control. Furadan applied April 13 to control alfalfa weevils. set up excellent first-harvest yields. Hot, dry conditions during most of the summer limited regrowth and yields of later harvests. The fourth harvest was so severely stunted that no yields were measured.

Table 5. Southwest Kansas, Garden City Alfalfa Performance Test, Seeded August 1999.
Irrigated

Forage Yield												
	tons/acre 00											
			2001	ry Matt	er	2000	00-01	Total, 15%	Total, % of			
NAME	5-24	6-27	8-1	9-6	Total	Total	Total	Moist.	Mean			
RELEASED CULTIVARS												
Pioneer 54Q53	3.00	2.20	2.15	2.36	9.71	12.08	21.79	25.64	104			
TMF 4464	3.15	2.19	1.96	2.31	9.61	12.16	21.77	25.61	104			
WL 327	2.95	2.15	1.97	2.32	9.39	12.21	21.60	25.41	103			
Aspire	2.84	2.22	2.15	2.40	9.61	11.77	21.38	25.15	102			
Magnum V	2.95	2.12	1.80	2.33	9.20	12.15	21.35	25.12	102			
Affinity+Z	3.11	2.12	1.97	2.27	9.47	11.84	21.31	25.07	102			
Emperor	3.01	2.12	2.00	2.21	9.34	11.97	21.31	25.07	102			
Dagger+EV	2.95	2.22	2.08	2.30	9.55	11.75	21.30	25.06	102			
Forecast 1001	2.97	2.21	1.93	2.30	9.41	11.87	21.28	25.04	102			
Cimarron 3i	3.09	2.03	1.85	2.28	9.25	11.97	21.22	24.96	101			
ABT 400SCL	2.87	2.13	1.99	2.29	9.28	11.87	21.15	24.88	101			
Jade II	2.90	2.11	1.80	2.29	9.10	12.01	21.11	24.84	101			
Pioneer 53V08	2.96	2.10	1.94	2.24	9.24	11.85	21.09	24.81	101			
Abilene+Z	2.82	2.11	2.07	2.34	9.34	11.68	21.02	24.73	100			
GH 750	2.93	2.13	1.89	2.22	9.17	11.77	20.94	24.64	100			
Cimarron SR	2.88	1.99	1.90	2.26	9.03	11.73	20.76	24.42	99			
6420	2.90	2.13	1.80	2.32	9.15	11.60	20.75	24.41	99			
FQ315	2.99	2.11	1.84	2.17	9.11	11.62	20.73	24.39	99			
ABT350	2.91	2.09	2.00	2.27	9.27	11.34	20.61	24.25	99			
DK 140	2.93	2.11	1.86	2.23	9.13	11.47	20.60	24.24	98			
DK 142	3.01	2.02	1.74	2.18	8.95	11.43	20.38	23.98	97			
Award	2.86	2.08	1.83	2.16	8.93	11.18	20.11	23.66	96			
Perry	2.85	1.95	1.71	2.25	8.76	11.30	20.06	23.60	96			
Kanza	2.63	2.11	2.01	2.46	9.21	10.83	20.04	23.58	96			
EXPERIMENTAL STRAINS												
DS983809	3.04	2.26	1.77	2.31	9.38	12.39	21.77	25.61	104			
ZC9850A	3.07	2.16	2.03	2.32	9.58	12.10	21.68	25.51	104			
HybriForce-400	3.13	2.19	1.96	2.39	9.67	11.98	21.65	25.47	103			
DS983810	2.94	2.19	1.77	2.30	9.20	12.37	21.57	25.38	103			
DS983808	2.99	2.22	1.71	2.22	9.14	12.36	21.50	25.29	103			
	(continued)											

Table 5. Southwest Kansas, Garden City Alfalfa Performance Test, Seeded August 1999.
Irrigated

	Forage Yield											
	tons/acre											
				ry Matte	er	2000	00.04	Total, 15%	Total, % of			
NAME	5-24	6-27	2001 8-1	9-6	Total	2000 Total	00-01 Total	Moist.	Mean			
ZC9853A	3.17	2.20	1.94	2.24	9.55	11.85	21.40	25.18	102			
DS983811	2.97	2.26	1.83	2.30	9.36	11.99	21.35	25.12	102			
DS983812	3.00	2.18	1.76	2.29	9.23	11.94	21.17	24.91	101			
DS9707 HYB	3.01	2.07	1.80	2.33	9.21	11.92	21.13	24.86	101			
ZC9650	2.79	2.04	2.00	2.25	9.08	11.92	21.00	24.71	100			
ZC9851A	2.78	2.08	2.00	2.32	9.18	11.81	20.99	24.69	100			
CW 64025	3.01	2.17	1.90	2.23	9.31	11.67	20.98	24.68	100			
ZC9854A	3.01	2.10	1.85	2.19	9.15	11.64	20.79	24.46	99			
DS9704 HYB	2.85	2.06	1.77	2.25	8.93	11.79	20.72	24.38	99			
CW 84024	2.84	2.07	1.82	2.21	8.94	11.64	20.58	24.21	98			
CW 74033	2.81	2.14	1.89	2.24	9.08	11.48	20.56	24.19	98			
CW 84025	3.06	2.13	1.88	2.24	9.31	11.24	20.55	24.18	98			
CW 64018	2.89	2.10	1.87	2.17	9.03	11.40	20.43	24.04	98			
DS983813	2.93	2.16	1.77	2.27	9.13	11.27	20.40	24.00	98			
ZC9840A	3.02	2.00	1.82	2.06	8.90	11.40	20.30	23.88	97			
ZC9842A	2.99	2.12	1.92	2.18	9.21	11.07	20.28	23.86	97			
CW 74043	2.97	2.08	1.69	2.11	8.85	11.41	20.26	23.84	97			
ZC9841A	2.72	2.03	1.87	2.16	8.78	11.13	19.91	23.42	95			
SUMMARY STATISTICS												
Average	2.94	2.12	1.89	2.26	9.21	11.71	20.92	24.61	100			
LSD(0.05)	0.18	0.13	0.13	0.10	0.45	0.43	0.96	1.13	5			
LSD(0.20)	0.12	0.09	0.08	0.06	0.29	0.22	0.63	0.74	3			
CV(%)	4.33	4.36	4.80	3.29	3.48	3.17	2.36	2.36	2			
MCV(%)	6.06	6.10	6.70	4.59	4.86	3.71	4.59	4.59	5			

LOCATION: Southwest Kansas

Site: Southwest Res.-Ext. Center

County: Finney
Town: Garden City
Soil: Keith silt loam
ESTABLISHMENT:

8/24/99; RCBD, 4 reps Plots 3'x20'; 3'x20' harvested

32 lb. seed/acre

2001 FERTILIZATION:

22-104-0 applied at planting

2001 PEST CONTROL:

Pursuit Plus applied in March to control grasses. Cygon 400 applied on August 8 to control cowpea aphids.

2001 CONDITIONS:

Cool, wet conditions early in the season facilitated excellent first and second harvest yields. Heat stress and cowpea aphids likely contributed to a third-harvest yield reduction.

Appendix 1: Varieties in 2001 Kansas Alfalfa Performance Tests with unverified fall dormancy and disease and insect resistance ratings.

W	ıtr	ı u	ın١	/ei	'ItI	ed	ta	Ш	do	rm	an				dise	ease and ins	sect I	<u>res</u>	ıst	an	ce	ra	itir	าตูร	3.					
						_	_		_		_		N									_	_		_		_		N	
COMPANY	_	_	.,	_			S	_	В	_			R	_		COMPANY				_			S	_	В	_			R	_
COMPANY										_	P H					COMPANY Name		F B D W												
Name AgriPro	D	**	VV	**	14	IX	^	^	^	14		14	14	_		Monsanto		U 44	***	***	14	IX	^	_	^	14	"	14	14	÷
Dagger+EV	5	ш	ш	ш	ш	ш	Ν./	ш	Ν.	D	Н					Aspire	4	5 M	Ь	ш	ш	ш	ш	ш	ь	ш				
Dagger+EV Defense+EV											Н					Award		7 IVI 4 Н												
Depend+EV											R					DK 131HG		+ 11 3 H												
Feast+EV											Н					DK 13111G		4 H												
Yielder											-					DK 140 DK 141		+ г. 4 Н												
Allied	5			'''	IX	''	_	11	_	-	_	-	_	_		DK 141		+ 11 4 H												
Macon	1	ы	ш	ы	ы	ш	ь	D		N /	Н					Mycogen	-	+ 11	К	11	К	'''	K	11	-	К	• • •	•	-	-
America's Alfalfa	4	11					K	K	-	IVI		-	-	-		TMF 4464		4 H	ы	ы	ы	ы	_	Þ	_	NA	P			_
Abilene+Z	_	ы	ш	ы	ы	ш	N /	ш	Ν.	D	R					NC+	-	+ 11			11	"	-	К	-	IVI	N	•	-	-
Affinity+Z											R					Jade II		4 H	D	ш	D	ш	D	D	Ν./		Ν./		N/I	N A
Amerigraze 401+2																NE AES & US		+ 17	К	П	К	П	К	К	IVI	-	IVI	-	IVI	IVI
Ameriguard 302+2																Perry		3 R					N 4							
Emperor											Н					Ranger		3 M												
Cargill	4	11			11		IVI	К	-	•	'''	-	-	-		NetSeeds	•	ואו כ	-	3	3	3	3	3	3	3	-	-	-	-
FQ315	2	ы	ь	ш	ш	ш	ш	D		D	Н					NetYield500		<i>1</i> ப	В	ш	В	ш	В	В		Б	N 4			
Dairyland Seed	3	П	К	П	П	п	п	К	-	Г	П	-	-	-		NK NEUTOOU	2	4 H	ĸ	П	ĸ	П	ĸ	ĸ	-	ĸ	IVI	-	-	-
Forecast 1001	1	ы	ь	D	D	ш		D		D	R		ы	ш		Geneva		4 H	ш	ш	ы	ш	В	ш		Б	ш			
																	2	+ П	П	П	П	П	ĸ	П	L	ĸ	П	-	-	-
Magnum V	4	П	ĸ	П	ĸ	П	ĸ	ĸ	IVI	ĸ	M	-	IVI	IVI		Pioneer	,						_		N 4					
Garst	4		_		_		_		N 4	Ь	N 4					53V08		3 H												
631											M					54H55		5 H												
6420 645-II											R H					54H69		4 H												
Golden Harvest	3	П	п	П	П	П	-	ĸ	-	-	П	-	-	-		54Q53	2	4 H	П	ĸ	ĸ	П	IVI	IVI	-	П	IVI	-	П	П
GH 750	1	ш		ш	ш	ш	Ь	В	В	N /	ш					Star	,	~ N.4	_						_	N 4			Ь	D
GH 750 GH 750											H					Sendero		3 M												
Gn 750 Great Plains	4	П	п	П	П	П	ĸ	ĸ	ĸ	IVI	П	-	-	-		Spur Stamina		4 H												
	4		_			_	_	Б		Ь	М	_						4 H	ĸ	П	П	П	П	П	-	П	ĸ	-	П	П
Cimarron 3i Cimarron SR											M					W-L Research		4 11					_			N 4			N 4	N 4
KS AES & USDA	4	П	п	П	П	п	К	П	-	Г	IVI	Г	-	-		ABT 400SCL		4 H												
	2	Ь					_	Б								ABT350		3 H 4 H												
Kanza	3	ĸ	-	-	-	-	ĸ	ĸ	-	-	-	-	-	-		Ace WL 232 HQ														
MBS Gold Plus	4		_								_					WL 232 FQ WL 324		2 H 3 H												
											R					-		о п 3 Н												
ProGro	4	П	ĸ	П	ĸ	П	ĸ	ĸ	IVI	-	M	-	-	-		WL 325 HQ		о п 4 Н												
																WL 326 GZ WL 327		+ п 4 Н												
Variety characteriz	zoti	on		do	٠.				_	- All	do	m	200	\ / r	atings:					esis							11	-	-	<u> </u>
FD = Fall dormand				uc.	<u>s.</u>						k va			утс	Ratin		Resis					IICC		% R		eta	nt r	بداد	nte	
BW = Bacterial wil	•	au	iiig								ema		<u>sty</u>		1	ig <u>code</u> S	Susc				33			/O IX		3.a 0-5	-	Jiai	ILO	
VW = Verticillium										rna		ai i			2	L	Low				_					0-3 3-14				
FW = Fusarium wi															3	M	Mode					200				5-12 5-3				
AN = Anthracnose			1							ing	ei nac				3 4	R	Resis			esis	sla	nce	;			ა-ა 1-5				
																				000)		
PRR = Phytophtho										che					5	H -	High					nt n	1		;	>50	70			
SAA = Spotted alf	alla	a d	hul	u						3I 7		_			6 7	-	Not a	uec	lud	шу	ıes	sie(ı							
PA = Pea aphid		h:	٨								An					Fall dorma	ancv ai	nd d	lise	อรค	ar	nd i	ทรศ	ect :	res	ista	nce	Э		
BAA = Blue alfalfa			u								opa				8	ratings are													e	
SN = Stem nemate			204	r-1	r	ac -	1				101				9	Certified A	Alfalfa S	See	d C	our	ncil	, N	AΑ	IC d	cult	ivaı	r			
APH = Aphanomy SRKN = Southern									U	۱۱ ر	887				10	description														
																Blank spa							arie	ty h	nas	no	t be	en		
NRKN = Northern				it M	em.	alO	ue									tested ade	equate	y to	or tr	iat t	ıraı	τ.								
PL = Potato leafho	ρp	er																												

Appendix 2: Entrants in 2001 Kansas Alfalfa Performance Tests.

AgriPro

AgriPro Seed PO Box 500 Slater, IA 50244 877-247-4776 agripro.com

Allied

Allied Seed Cooperative PO Box 945 Angola, IN 46703 800-813-5025

America's Alfalfa

America's Alfalfa PO Box 404 Princeton, IL 61356-0404 815-875-6426 americasalfalfa.com

Cargill

Mycogen Seed 14125 Amanda Lane Wamego, KS 66547-9359 785-456-2724 mycogen.com

Dairyland

Dairyland Research 9728 S Clinton Corners Rd Clinton, WI 53525 608-676-2237 dairylandseed.com

Garst

Garst Seed Co 219 E Garfield Greensburg, KS 67054 620-723-2454 garstseed.com

Golden Harvest

JC Robinson Seed Co 100 JC Robinson Blvd Waterloo, NE 68069 800-228-9906

Great Plains

Great Plains Research Co Inc 3624 Kildaire Farm Rd Apex, NC 27502 919-362-1583 greatplainsresearch.com

KS AES & USDA

KSU - Foundation Seed 2200 Kimball Ave Manhattan, KS 66502 785-532-6115

MBS

MBS Inc 225 West 1st St Story City, IA 50248-1657 515-733-5274

Monsanto

Monsanto Seed 3100 Sycamore Rd DeKalb, IL 60115 815-758-9323 farmsource.com

Mycogen

Mycogen Seed 14125 Amanda Lane Wamego, KS 66547-9359 785-456-2724 mycogen.com

NC+

NC+ Hybrids PO Box 4408 1300 N 79th Lincoln, NE 68504 402-467-2517 nc-plus.com

NE AES & USDA

Foundation Seed Division UNL 3115 North 70th Lincoln, NE 68507-2104 402-472-4290

NetSeeds

NetSeeds 9001 Hickman Rd Suite 320 Urbandale, IA 50322 515-331-0939 netseeds.com

NK

Syngenta Seeds, Inc. 1525 Airport Road Ames, IA 50010 800-258-0498 syngenta.com

Pioneer

Pioneer Hi-Bred Intl Inc PO Box 1150 Johnston, IA 50131-1150 515-334-6645 pioneer.com

Star

Advanced Genetics PO Box 504 Beloit, KS 67420 800-782-7611 starseed1.com

W-L Research

W-L Research Inc 8701 W US Hwy 14 Evansville, WI 53536 608-882-4100 www.wlresearch.com For those interested in accessing crop performance testing information electronically, visit our World Wide Web site. Most of the information contained in this publication is available for viewing or downloading. The URL is http://www.ksu.edu/kscpt.

Excerpts from the

UNIVERSITY RESEARCH POLICY AGREEMENT WITH COOPERATING SEED COMPANIES

Permission is hereby given to Kansas State University to test varieties and/or hybrids designated on the attached entry forms in the manner indicated in the test announcements. I certify that seed submitted for testing is a true sample of the seed being offered for sale.

I understand that all results from Kansas Crop Performance Tests belong to the University and the public and shall be controlled by the University so as to produce the greatest benefit to the public. Performance data may be used in the following ways: 1) Tables may be reproduced in their entirety provided the source is referenced and data are not manipulated or reinterpreted; 2) Advertising statements by an individual company about the performance of its entries may be made as long as they are accurate statements about the data as published, with no reference to other companies' names or cultivars. In both cases, the following must be included with the reprint or ad citing the appropriate publication number and title: "See the official Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress 882 '2001 Kansas Performance Tests with Corn Hybrids', or the Kansas Crop Performance Test website, http://www.ksu.edu/kscpt, for details. Endorsement or recommendation by Kansas State University is not implied."

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name of work, Kansas State University, and the date the work was published.

CONTRIBUTORS

MAIN STATION, MANHATTAN	RESEARCH CENTERS	
Kraig Roozehoom, Associate	Joseph Mover	

Agronomist (Senior Author)

Paul St. Amand, Assistant Professor

Alfalfa Breeding and Genetics

Mound Valley

Merle Witt

Garden City

William Heer Hutchinson Larry Maddux Powhattan

EXPERIMENT FIELDS

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

For those interested in accessing crop performance testing information electronically, visit our World Wide Web site. Most of the information contained in this publication is available for viewing or downloading.

The URL is http://www.ksu.edu/kscpt.

Excerpts from the UNIVERSITY RESEARCH POLICY AGREEMENT WITH COOPERATING SEED COMPANIES

Permission is hereby given to Kansas State University to test varieties and/or hybrids designated on the attached entry forms in the manner indicated in the test announcements. I certify that seed submitted for testing is a true sample of the seed being offered for sale.

I understand that all results from Kansas Crop Performance Tests belong to the University and the public and shall be controlled by the University so as to produce the greatest benefit to the public. Performance data may be used in the following ways: 1) Tables may be reproduced in their entirety provided the source is referenced and data are not manipulated or reinterpreted; 2) Advertising statements by an individual company about the performance of its entries may be made as long as they are accurate statements about the data as published, with no reference to other companies' names or cultivars. In both cases, the following must be included with the reprint or ad citing the appropriate publication number and title: "See the official Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress 887 '2001 Kansas Performance Tests with Alfalfa Varieties', or the Kansas Crop Performance Test website, http://www.ksu.edu/kscpt, for details. Endorsement or recommendation by Kansas State University is not implied."

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name of work, Kansas State University, and the date the work was published.

CONTRIBUTORS

MAIN STATION, MANHATTAN RESEARCH CENTERS EXPERIMENT FIELDS
Kraig Roozeboom, Associate Joseph Moyer William Heer
Agronomist (Senior Author) MoundValley Hutchinson

Paul St. Amand, Assistant Professor Merle Witt Larry Maddux
Alfalfa Breeding and Genetics Garden City Powhattan

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan 66506

SRP 887

January 2002

It is the policy of Kansas State University Agricultural Experiment Station and Cooperative Extension Service that all persons shall have equal opportunity and access to its educational programs, services, activities, and materials without regard to race, color, religion, national origin, sex, age, or disability. Kansas State University is an equal opportunity organization. These materials may be available in alternative formats.

3.6M