

2000 KANSAS SUMMER ANNUAL FORAGE PERFORMANCE TESTS¹

Kraig Roozeboom and Pat Evans²

SUMMARY

This report presents results of tests to compare hybrids of corn, forage sorghum, and sorghum-sudan. Various characteristics of forage production and quality were measured at Colby and Strong City, Kansas.

CONTENTS

	2		
PROCEDURES			
RESULTS			
EASTERN KANSAS, STRONG CITY			
Forage Production	Table 1		
Forage Quality	Table 24		
Grain Yield, Maturity, Height, etc.	Table 35		
WESTERN KANSAS IRRIGATED, CO	DLBY		
Forage Production	Table 4		
Forage Quality	Table 57		
Grain Yield, Maturity, Height, etc.	Table 68		
APPENDIX: ENTRANTS AND ENTRIES			

Results from Kansas Crop Performance Tests belong to the University and the public and shall be controlled by the University so as to produce the greatest benefit to the public. Performance data may be used in the following ways: 1) Tables may be reproduced in their entirety provided the source is referenced and data are not manipulated or reinterpreted; 2) Advertising statements by an individual company about the performance of its entries may be made as long as they are accurate statements about the data as published, with no reference to other companies' names or cultivars. In both cases, the following must be included with the reprint or ad citing the appropriate publication number and title: "See the official Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress 825 '1998 Kansas Performance Tests with Soybean Varieties', or the Kansas Crop Performance Test website, http://www.ksu.edu/kscpt, for details. Endorsement or recommendation by Kansas State University is not implied."

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name of work, Kansas State University, and the date the work was published.

The information contained in this publication is available for viewing or downloading at http://www.ksu.edu/kscpt.

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

¹Contribution no. 01-284-S from the Kansas Agricultural Experiment Station.

²Associate Agronomist, Department of Agronomy, Manhattan and Research Technologist, Northwest Research-Extension Center, Colby.

INTRODUCTION

Kansas is a top producer of meat and animal products. An important input for the beef and dairy industries is the fodder or roughage that forms a key element in ruminant diets. In 1999, Kansas farms produced nearly 3.7 million tons of corn and sorghum silage (2000 Farm Facts, Kansas Agricultural Statistics Service). Additional roughage was obtained from other summer annual forages such as sorghum-sudan. This publication presents the results of tests designed to compare forage production and quality of corn, sorghum, and sorghum-sudan hybrids.

PROCEDURES

Crop performance tests in Kansas are a cooperative effort of K-State Research and Extension and the private seed industry. Entry fees from private seed companies help finance companies the tests. Seed receive test announcements and entry forms in late January; deadlines for receipt of completed entry forms and seed are in early March. Because entry selection and location are voluntary, not all hybrids grown in the state are included in tests, and hybrids are not grown uniformly at all test locations.

Seed companies were offered the opportunity to participate in summer annual forage tests at two locations in 2000, Colby and Strong City. Six companies entered a total of 4 corn hybrids, 9 forage sorghum hybrids, and 10 sorghum-sudan hybrids.

Three plots (replications) of each hybrid were grown at each location in a randomized complete block design. Each plot consisted of four rows trimmed to a length of 20 or 30 feet, depending on location. Forage and grain yield estimates and samples for moisture and quality analysis were obtained from the center two rows. Entries were arranged so that statistical comparisons could be made among hybrids of the same species and between hybrids of different species.

Each species was harvested as close as possible to the stage of maturity that would optimize yield and quality of forage. The corn hybrids were harvested at 60% - 75% milk line, the forage sorghum hybrids at mid-dough, and the sorghumsudan hybrids at boot stage. The sorghum-sudan hybrids were harvested twice at both locations.

Samples from each harvest were collected to determine moisture content and for laboratory analysis of forage quality, including crude protein, acid detergent fiber (ADF), and neutral detergent Crude protein is calculated by fiber (NDF). multiplying the nitrogen content of the forage by 6.25, the average proportion of elemental nitrogen to plant protein. While not all of the crude protein in a forage is available to the animal as true protein, a forage with a higher level of crude protein generally requires less supplemental protein in the ration. The acid detergent fiber (ADF) estimates total cellulose, lignin, and pectin and is often used to predict the energy content of forage. Forages with lower ADF values are desirable because of their higher energy content. The neutral detergent fiber (NDF) estimates total fiber consisting of cellulose, hemicellulose, and lignin and is often related to intake. Forages with lower NDF values are desirable because the animal can consume more of the forage, requiring fewer ration supplements.

RESULTS

Test results are presented in Tables 1 - 6. Forage yield is presented as pounds of dry matter per acre to facilitate comparisons between species. Yields were relatively low because of stress caused by lack of moisture and high temperatures. Even the irrigated location suffered to some extent because of the hot, dry winds in August.

Forage yield and quality patterns among species were similar at both locations. The average forage yields for corn, forage sorghum, and the first cutting of sorghum-sudan were similar. The second cutting of sorghum-sudan added roughly a ton of additional dry matter. Forage moisture was lowest for the corn, highest for the sorghumsudan, and intermediate for the forage sorghum. Forage protein tended to be lowest for the forage sorghum and highest for the sorghum-sudan. The ADF was lowest for corn and highest for sorghumsudan. The NDF rankings among species were not consistent across locations. Grain vields tended to vary widely among the corn hybrids but were more consistent among sorghum hybrids. Hybrids within each species differed for most yield and quality parameters.

		Y	ield (lb DM/	Moisture (%)		
BRAND	NAME	Total	Cut 1	Cut 2	Cut 1	Cut 2
<u>CORN</u>						
CHECK	MIDLAND 798	5,224			59	
LFY	MBS3811xLFY497L	5,180			60	
LFY	MBS3811xLFY554L	5,002			62	
CHECK	PIONEER 31B13	5,001			56	
LFY	FR1064xLFY419L	3,829			57	
	AVERAGE	4,847			59	
	CV (%)	6			4	
	LSD (0.05)	436			3	
FORAGE S	ORGHUM					
BUFFALO	CANEX II	5,531			67	
SG	SG 100BMR	5,242			68	
CHECK	EARLY SUMAC	5,141			69	
MMR	335/27	4.973			75	
BUFFALO	CANEX	4.829			66	
SG	SG 101BMR	4.825			69	
BUFFALO	CANEX BMR208	4.768			63	
MMR	327/23	4.513			68	
	AVERAGE	4.978			68	
	CV (%)	5			1	
	LSD (0.05)	351			1	
SORGHUM	1 SUDAN					
BUFFALO	GRAZEX IIW	7 745	5 487	2 258	79	77
BUFFALO	GRAZEX BMR737	7 377	5 945	1 432	77	74
MMR	327/BMR	7 079	5 533	1,546	79	76
CHECK	NB280S	6 703	4 876	1 827	80	77
BUFFALO	GRAZEX II	6 649	4 508	2 141	80	77
SG	SG 301BMR	6,357	4 555	1 802	83	77
CHECK	PIPER	6 208	4 071	2 137	76	73
SG	SG 302BMR	6 105	4 224	1 881	81	76
00		6 778	4,224	1,001	79	76
		6	4,000 7	1,070	1	2
	LSD (0.05)	620	, 510	301	2	2
		5 622			70	
		5,032 607			2	
		031			4	

Table 1. Eastern Kansas Summer Annual Forage Froduction, Strong City, 2000	Table 1.	Eastern	Kansas	Summer	Annual	Forage	Production,	Strong	City,	2000.
--	----------	---------	--------	--------	--------	--------	-------------	--------	-------	-------

		Protei	n (%)	ADF	(%)	NDF (%)	
		Cut 1	Cut 2	Cut 1	Cut 2	Cut 1	Cut 2
<u>CORN</u>							
CHECK	MIDLAND 798	8.3		33.8		59.6	
LFY	FR1064xLFY419L	7.1		34.1		61.3	
CHECK	PIONEER 31B13	6.7		32.9		60.4	
LFY	MBS3811xLFY497L	6.7		36.0		64.7	
LFY	MBS3811xLFY554L	6.5		32.3		61.0	
	AVERAGE	7.1		33.8		61.4	
	CV (%)	0.6		2.7		2.0	
	LSD (0.05)	0.1		1.9		2.6	
FORAGE S	SORGHUM						
CHECK	EARLY SUMAC	5.9		33.9		58.8	
SG	SG 100BMR	5.7		36.3		57.8	
MMR	327/23	5.6		34.0		54.1	
BUFFALO	CANEX BMR208	5.5		34.2		56.3	
MMR	335/27	5.3		38.3		61.6	
BUFFALO	CANEX	5.2		30.5		51.8	
SG	SG 101BMR	4.8		37.6		60.9	
BUFFALO	CANEX II	4.7		30.8		52.8	
	AVERAGE	5.3		34.4		56.8	
	CV (%)	2.3		3.1		2.4	
	LSD (0.05)	0.2		2.0		2.6	
SORGHUN	/ SUDAN						
CHECK	PIPER	12.3	9.4	32.8	38.8	55.2	64.4
MMR	327/BMR	11.9	8.1	33.3	37.4	54.2	60.9
BUFFALO	GRAZEX IIW	11.6	8.1	38.0	39.3	58.6	64.2
SG	SG 302BMR	11.5	9.4	35.3	35.3	54.9	60.3
BUFFALO	GRAZEX II	11.1	9.2	34.9	37.2	55.4	61.0
BUFFALO	GRAZEX BMR737	10.9	8.6	34.1	38.2	55.0	61.3
CHECK	NB280S	10.6	10.5	34.9	36.9	55.6	61.3
SG	SG 301BMR	8.7	9.1	35.3	38.4	54.6	61.6
	AVERAGE	11.1	9.0	34.8	37.7	55.4	61.9
	CV (%)	7.2	0.4	5.7	4.0	2.0	1.4
	LSD (0.05)	1.5	0.1	NS	NS	2.1	1.7
OVERALL	AVERAGE	7.9		34.4		57.4	
OVERALL	LSD (0.05)	1.1		4.1		3.0	

Table 2. Eastern Kansas Summer Annual Forage Quality, Strong City, 2000.

		Grain	Days	Julian	Plant		
		Yield	to	Bloom	Height	Lodge	Stand
		(bu/a)	Bloom	Date	(in)	(%)	(%)
<u>CORN</u>							
CHECK	PIONEER 31B13	81	67	192	88		92
CHECK	MIDLAND 798	70	69	194	88		78
LFY	MBS3811xLFY554L	56	72	197	96		71
LFY	MBS3811xLFY497L	53	71	196	103		93
LFY	FR1064xLFY419L	31	71	196	100		88
	AVERAGE	58	70	195	95		84
	CV (%)	10	2	1	2		12
	LSD (0.05)	9	2	2	3		NS
FORAGE S	SORGHUM						
BUFFALO	CANEX BMR208	66	72	197	88	0	77
BUFFALO	CANEX II	63	72	197	94	0	83
SG	SG 100BMR	59	77	202	96	57	76
MMR	327/23	51	80	205	99	0	77
SG	SG 101BMR	47	75	200	97	47	74
BUFFALO	CANEX	47	72	197	86	0	76
CHECK	EARLY SUMAC	45	72	197	82	0	94
MMR	335/27				98	0	79
	AVERAGE	54	74	199	93	13	80
	CV (%)	9	3	1	3	88	13
	LSD (0.05)	7	4	4	4	16	NS
SORGHUN	<u>I SUDAN</u>						
BUFFALO	GRAZEX IIW				69		
BUFFALO	GRAZEX BMR737				67		
CHECK	NB280S				65		
MMR	327/BMR				64		
BUFFALO	GRAZEX II				64		
CHECK	PIPER				62		
SG	SG 301BMR				59		
SG	SG 302BMR				52		
	AVERAGE				63		
	CV (%)				8		
	LSD (0.05)				7		
OVERALL	AVERAGE	56	72	197	82	13	81
OVERALL	LSD (0.05)	11	NS	4	8	15	NS

Table 3. Eastern Kansas Summer Annual Forage Grain Yield, Maturity, Plant Height, Lodging, and Stand, Strong City, 2000.

		Yi	eld (lb DM/a))	Moistu	re (%)
BRAND	NAME	Total	Cut 1	Cut 2	Cut 1	Cut 2
CODN						
		8 200			64	
TRIUMPH	1866Bt	7 806			69	
LFY	MBS3811xLFY497L	7,795			65	
CHECK	MIDLAND 798	7,688			68	
LFY	MBS3811xLFY554L	5,975			72	
LFY	FR1064xLFY419L	5,553			63	
	AVERAGE	7,171			67	
	CV (%)	9			5	
	LSD (0.05)	1,008			5	
FORAGE S	SORGHUM					
CHECK	EARLY SUMAC	9,276			75	
BUFFALO	CANEX BMR208	7,866			73	
MMR	327/23	7,856			77	
BUFFALO	CANEX II	7,840			74	
CHECK	ATLAS	7,678			77	
KAYSTAR	MILLENIUM	7,180			74	
SG	SG 100BMR	6,673			78	
BUFFALO	CANEX	6,649			73	
KAYSTAR	4EVERGREEN	6,349			82	
MMR	335/27	4,355			81	
	AVERAGE	7,172			76	
	CV (%)	9			2	
	LSD (0.05)	913			2	
<u>SORGHUN</u>	I SUDAN					
BUFFALO	GRAZEX IIW	11,513	8,528	2,985	82	76
CHECK	PIPER	10,904	7,004	3,900	82	75
TRIUMPH	SUPERSWEET 10	10,638	7,794	2,843	85	78
BUFFALO	GRAZEX II	10,552	8,065	2,487	83	77
MMR	327/BMR	9,504	7,855	1,649	83	75
TRIUMPH	SOONERSWEET	9,495	7,001	2,494	84	//
RAYSIAR		9,229	7,874	1,356	84	74
BUFFALO		8,906	7,184	1,722	83	74
3G 8C		0,091	0,700	2,102	04 07	70
		0,049	6 008	1,704	01 02	70
SG	SG 302BMR	0,030	0,990 6 125	1 637	02 85	70
50	AVERAGE	9 589	7 357	2 222	8 <u>4</u>	76
		3,303 8	7	13	2	2
	LSD (0.05)	1,040	, 739	410	2	2
		0.000			70	
OVERALL		0,∠Uð 1 105			٥/ د	

Table 4. Western Kansas Irrigated Summer Annual Forage Production, Colby, 2000.

		Protei	in (%)	ADF (%)		NDF (%)	
		Cut 1	Cut 2	Cut 1	Cut 2	Cut 1	Cut 2
0000							
CORN		0.0		00.4		54.0	
	FR1064xLFY419L	6.8		29.1		51.8	
		6.6		30.1		51.5	
	MBS3811XLFY554L	6.5		30.3		54.3	
	MBS3811XLFY497L	6.5		31.5		56.7	
CHECK	PIONEER 31B13	6.4		28.3		50.0	
CHECK	MIDLAND 798	5.5		30.7		48.5	
	AVERAGE	6.4		30.0		52.1	
	CV (%)	4.0		3.8		3.0	
	LSD (0.05)	0.5		NS		3.2	
FORAGE S	<u>SORGHUM</u>						
CHECK	EARLY SUMAC	6.3		37.2		55.1	
CHECK	ATLAS	6.1		32.8		56.0	
SG	SG 100BMR	6.1		38.6		57.7	
MMR	335/27	6.1		41.9		62.0	
KAYSTAR	MILLENIUM	5.8		38.3		59.5	
KAYSTAR	4EVERGREEN	5.7		44.1		63.7	
BUFFALO	CANEX II	5.7		36.9		53.3	
MMR	327/23	5.4		39.7		60.0	
BUFFALO	CANEX	5.4		31.4		49.6	
BUFFALO	CANEX BMR208	5.3		37.4		58.1	
	AVERAGE	5.8		37.8		57.5	
	CV (%)	4.4		7.1		3.4	
	LSD (0.05)	0.5		4.9		3.5	
SORGHUM	I SUDAN						
SG	SG 302BMR	8.8	92	37.2	36.8	58.8	63.8
SG	SG 301BMR	8.5	9.6	41.6	38.2	60.8	65 0
SG	SG 201BMR	8.4	77	33.0	38.1	58 7	64 8
KAVSTAR	MEGAGREEN	0.4 8.4	9.7	41 3	37.4	62.1	64 7
CHECK	PIPER	0. 4 8 1	10.2	43.8	38.3	67.0	65.2
		8.0	8.8	40.0	38.0	6/ 3	64.6
BUFFALO	GRAZEX BMR737	0.0 8.0	0.0 8 0	37.7	30.5	50.8	65.6
		7.8	8.6	12.6	37.7	63.1	63.7
	GRAZEX IIW/	7.0	77	42.0	38.2	63.0	64.4
		7.6	7.7 8.8	40.1 /1 Q	30.2	62.8	63.7
		7.0	7.0	41.0	20.1	62.0	64.2
		7.5	1.0	41.0 22.0	20.2	02.9 50.4	64.2
		0.9	9.4	33.9	39.3 20.2	09.4 62.0	04.1 64.5
		0.U	0.9	40.4	აo.ა ი ი	62.0	04.5
		4.5	2.0	4.2	3.∠ NO	4.4	1.2
	LOD (0.00)	0.7	0.3	3.0	N2	N2	INS
OVERALL	AVERAGE	6.8		37.3		58.3	
OVERALL	LSD (0.05)	0.7		4.0		4.7	

Table 5. Western Kansas Irrigated Summer Annual Forage Quality, Co	by, 2000.
--	-----------

	,		-	,			
		Grain	Days	Julian	Plant		<u> </u>
		Y Ield	t0 Dia ang	Bloom	Height	Lodge	Stand
		(bu/a)	BIOOM	Date	(in)	(%)	(%)
<u>CORN</u>							
CHECK	PIONEER 31B13	84	79	202	86	0	88
TRIUMPH	1866Bt	83	82	205	88	2	89
CHECK	MIDLAND 798	48	83	206	86	0	97
LFY	MBS3811xLFY497L	48	82	205	93	0	99
LFY	FR1064xLFY419L	42	80	203	90	15	84
LFY	MBS3811xLFY554L	24	83	206	96	0	91
	AVERAGE	55	82	205	90	3	91
	CV (%)	12	2	1	3	221	7
	LSD (0.05)	10	NS	NS	5	NS	NS
FORAGE S	SORGHUM						
KAYSTAR	MILLENIUM	54	81	223	96	23	81
BUFFALO	CANEX II	49	77	219	104	3	88
SG	SG 100BMR	47	83	225	98	45	77
MMR	327/23	44	79	221	101	10	85
BUFFALO	CANEX BMR208	44	77	219	97	8	90
CHECK	EARLY SUMAC	44	76	218	91	7	66
BUFFALO	CANEX	41	75	217	96	0	67
CHECK	ATLAS	30	85	227	100	0	60
KAYSTAR	4EVERGREEN				99	0	81
MMR	335/27				96	0	86
	AVERAGE	44	79	221	98	10	78
	CV (%)	8	1	0	4	145	12
	LSD (0.05)	5	1	1	5	20	14
SORCHUN							
	PIPER				03		
	GRAZEX IIW				84		
CHECK	NR280S				83		
MMR	327/BMR				78		
BUFFALO	GRAZEX II				77		
TRIUMPH	SOONERSWEET				77		
TRIUMPH	SUPERSWEET 10				73		
BUFFALO	GRAZEX BMR737				73		
SG	SG 301BMR				73		
SG	SG 302BMR				69		
KAYSTAR	MEGAGREEN				68		
SG	SG 201BMR				67		
	AVERAGE				76		
	CV (%)				8		
	LSD (0.05)				9		
	· · /						
OVERALL	AVERAGE	49	80	214	87	7	83
OVERALL	LSD (0.05)	8	NS	2	9	14	15

Table 6. Western Kansas Irrigated Summer Annual Forage Grain Yield,Maturity, Plant Height, Lodging, and Stand, Colby, 2000.

Company	Corn	Forage Sorghum	Sorghum-Sudan
Kaystar Seed PO Box 947 40329 us Hwy 14 E Huron, SD 57350 (605)352-8791 kaystarseed@basec.net		4EVERGREEN MILLENIUM ¹	MEGAGREEN
Lfy, L.L.C. 1281 Fourth Street Monterey, CA 93940 (831)657-9002 110341.175@compuserve.com	FR1064xLFY419L MBS3811xLFY497L MBS3811xLFY554L		
MMR Genetics L.L.C. PO Box 60 Vega, TX 79092 (806)267-2379		MMR 327/23 ¹ MMR 335/27 ²	MMR 327/BMR ¹
Garrison & Townsend, Inc. PO Drawer 2420 Hereford, TX 79045 (800)333-9048 bill@gtseed.com		SG 100BMR ¹ SG 101BMR ¹	SG 201BMR ¹ SG 301BMR ^{1 2} SG 302BMR ^{1 2}
Sharp Brothers Seed PO Box 140 Healy, KS 67880 (316)398-2231 sharpseed.com		CANEX BMR208 ¹ CANEX CANEX II	GRAZEX BMR ¹ GRAZEX II GRAZEX IIW
Triumph Seed Co., Inc. PO Box 1050 Hwy 62 Bypass Ralls, TX 79357 (806)253-2584 sales@triumphseed.com	1866Bt		SOONERSWEET SUPERSWEET 10
Checks entered by K-State	PIONEER 31B13 MIDLAND 798	ATLAS EARLY SUMAC	NB280S PIPER (SUDAN)

¹ Possesses brown midrib trait.

² Photoperiod sensitive, flowers in response to shorter days.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan 66506 SRP 872 January 2001

It is the policy of Kansas State University Agricultural Experiment Station and Cooperative Extension Service that all persons shall have equal opportunity and access to its educational programs, services, activities, and materials without regard to race, color, religion, national origin, sex, age, or disability. Kansas State University is an equal opportunity organization. These materials may be available in alternative formats. 800

2000 KANSAS SUMMER ANNUAL FORAGE PERFORMANCE TESTS¹

Kraig Roozeboom and Pat Evans²

SUMMARY

This report presents results of tests to compare hybrids of corn, forage sorghum, and sorghum-sudan. Various characteristics of forage production and quality were measured at Colby and Strong City, Kansas.

CONTENTS

INTRODUCTION				
PROCEDURES	2			
RESULTS	2			
EASTERN KANSAS, STRONG CITY				
Forage Production	Table 1			
Forage Quality	Table 24			
Grain Yield, Maturity, Height, etc.	Table 35			
WESTERN KANSAS IRRIGATED, CO	OLBY			
Forage Production	Table 46			
Forage Quality	Table 57			
Grain Yield, Maturity, Height, etc.	Table 68			
APPENDIX: ENTRANTS AND ENTRIES				

Results from Kansas Crop Performance Tests belong to the University and the public and shall be controlled by the University so as to produce the greatest benefit to the public. Performance data may be used in the following ways: 1) Tables may be reproduced in their entirety provided the source is referenced and data are not manipulated or reinterpreted; 2) Advertising statements by an individual company about the performance of its entries may be made as long as they are accurate statements about the data as published, with no reference to other companies' names or cultivars. In both cases, the following must be included with the reprint or ad citing the appropriate publication number and title: "See the official Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress 825 '1998 Kansas Performance Tests with Soybean Varieties', or the Kansas Crop Performance Test website, http://www.ksu.edu/kscpt, for details. Endorsement or recommendation by Kansas State University is not implied."

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name of work, Kansas State University, and the date the work was published.

The information contained in this publication is available for viewing or downloading at http://www.ksu.edu/kscpt.

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

¹Contribution no. 01-284-S from the Kansas Agricultural Experiment Station.

²Associate Agronomist, Department of Agronomy, Manhattan and Research Technologist, Northwest Research-Extension Center, Colby.

INTRODUCTION

Kansas is a top producer of meat and animal products. An important input for the beef and dairy industries is the fodder or roughage that forms a key element in ruminant diets. In 1999, Kansas farms produced nearly 3.7 million tons of corn and sorghum silage (2000 Farm Facts, Kansas Agricultural Statistics Service). Additional roughage was obtained from other summer annual forages such as sorghum-sudan. This publication presents the results of tests designed to compare forage production and quality of corn, sorghum, and sorghum-sudan hybrids.

PROCEDURES

Crop performance tests in Kansas are a cooperative effort of K-State Research and Extension and the private seed industry. Entry fees from private seed companies help finance companies the tests. Seed receive test announcements and entry forms in late January; deadlines for receipt of completed entry forms and seed are in early March. Because entry selection and location are voluntary, not all hybrids grown in the state are included in tests, and hybrids are not grown uniformly at all test locations.

Seed companies were offered the opportunity to participate in summer annual forage tests at two locations in 2000, Colby and Strong City. Six companies entered a total of 4 corn hybrids, 9 forage sorghum hybrids, and 10 sorghum-sudan hybrids.

Three plots (replications) of each hybrid were grown at each location in a randomized complete block design. Each plot consisted of four rows trimmed to a length of 20 or 30 feet, depending on location. Forage and grain yield estimates and samples for moisture and quality analysis were obtained from the center two rows. Entries were arranged so that statistical comparisons could be made among hybrids of the same species and between hybrids of different species.

Each species was harvested as close as possible to the stage of maturity that would optimize yield and quality of forage. The corn hybrids were harvested at 60% - 75% milk line, the forage sorghum hybrids at mid-dough, and the sorghumsudan hybrids at boot stage. The sorghum-sudan hybrids were harvested twice at both locations.

Samples from each harvest were collected to determine moisture content and for laboratory analysis of forage quality, including crude protein, acid detergent fiber (ADF), and neutral detergent Crude protein is calculated by fiber (NDF). multiplying the nitrogen content of the forage by 6.25, the average proportion of elemental nitrogen to plant protein. While not all of the crude protein in a forage is available to the animal as true protein, a forage with a higher level of crude protein generally requires less supplemental protein in the ration. The acid detergent fiber (ADF) estimates total cellulose, lignin, and pectin and is often used to predict the energy content of Forages with lower ADF values are forage. desirable because of their higher energy content. The neutral detergent fiber (NDF) estimates total fiber consisting of cellulose, hemicellulose, and lignin and is often related to intake. Forages with lower NDF values are desirable because the animal can consume more of the forage, requiring fewer ration supplements.

RESULTS

Test results are presented in Tables 1 - 6. Forage yield is presented as pounds of dry matter per acre to facilitate comparisons between species. Yields were relatively low because of stress caused by lack of moisture and high temperatures. Even the irrigated location suffered to some extent because of the hot, dry winds in August.

Forage yield and quality patterns among species were similar at both locations. The average forage yields for corn, forage sorghum, and the first cutting of sorghum-sudan were similar. The second cutting of sorghum-sudan added roughly a ton of additional dry matter. Forage moisture was lowest for the corn, highest for the sorghumsudan, and intermediate for the forage sorghum. Forage protein tended to be lowest for the forage sorghum and highest for the sorghum-sudan. The ADF was lowest for corn and highest for sorghumsudan. The NDF rankings among species were not consistent across locations. Grain vields tended to vary widely among the corn hybrids but were more consistent among sorghum hybrids. Hybrids within each species differed for most yield and quality parameters.

		Yi	ield (lb DM/a	a)	Moistu	re (%)
BRAND	NAME	Total	Cut 1	Cut 2	Cut 1	Cut 2
<u>CORN</u>						
CHECK	MIDLAND 798	5,224			59	
LFY	MBS3811xLFY497L	5,180			60	
LFY	MBS3811xLFY554L	5,002			62	
CHECK	PIONEER 31B13	5,001			56	
LFY	FR1064xLFY419L	3,829			57	
	AVERAGE	4,847			59	
	CV (%)	6			4	
	LSD (0.05)	436			3	
FORAGE S	ORGHUM					
BUFFALO	CANEX II	5,531			67	
SG	SG 100BMR	5,242			68	
CHECK	EARLY SUMAC	5.141			69	
MMR	335/27	4.973			75	
BUFFALO	CANEX	4.829			66	
SG	SG 101BMR	4.825			69	
BUFFALO	CANEX BMB208	4,768			63	
MMR	327/23	4 513			68	
	AVERAGE	4 978			68	
	CV (%)	.,5			1	
	LSD (0.05)	351			1	
SOBGHUM						
		7 745	5 487	2 258	70	77
		7,745	5 9/5	1 /32	73	74
	327/BMR	7,077	5 5 2 2	1,402	70	76
	NB280S	6 703	J,JJJ 1 876	1,040	80	70
		6,703	4,070	0 1 4 1	80	77
SC		0,049 6 257	4,506	2,141	00	77
		0,307 6,000	4,555	1,002	00 70	77
		0,208	4,071	2,137	70	73
SG	SG 302BMR	6,105	4,224	1,881	81	76
	AVERAGE	6,778	4,900	1,878	79	76
	CV (%)	6	/	11	1	2
	LSD (0.05)	620	510	301	2	2
OVERALL	AVERAGE	5,632			70	
OVERALL	LSD (0.05)	697			2	

Table 1. I	Eastern I	Kansas	Summer	Annual	Forage	Production,	Strong	City,	2000.
------------	-----------	--------	--------	--------	--------	-------------	--------	-------	-------

		Protei	n (%)	ADF	(%)	NDF	(%)
		Cut 1	Cut 2	Cut 1	Cut 2	Cut 1	Cut 2
CORN							
CHECK	MIDLAND 798	8.3		33.8		59.6	
LFY	FR1064xLFY419L	7.1		34.1		61.3	
CHECK	PIONEER 31B13	6.7		32.9		60.4	
LFY	MBS3811xLFY497L	6.7		36.0		64.7	
LFY	MBS3811xLFY554L	6.5		32.3		61.0	
	AVERAGE	7.1		33.8		61.4	
	CV (%)	0.6		2.7		2.0	
	LSD (0.05)	0.1		1.9		2.6	
FORAGE S	SORGHUM						
CHECK	EARLY SUMAC	5.9		33.9		58.8	
SG	SG 100BMR	5.7		36.3		57.8	
MMR	327/23	5.6		34.0		54.1	
BUFFALO	CANEX BMR208	5.5		34.2		56.3	
MMR	335/27	5.3		38.3		61.6	
BUFFALO	CANEX	5.2		30.5		51.8	
SG	SG 101BMR	4.8		37.6		60.9	
BUFFALO	CANEX II	4.7		30.8		52.8	
	AVERAGE	5.3		34.4		56.8	
	CV (%)	2.3		3.1		2.4	
	LSD (0.05)	0.2		2.0		2.6	
SOBGHUN							
	PIPER	12.3	94	32.8	38.8	55.2	64 4
MMR	327/BMB	11.0	8.1	33.3	37.4	54 2	60.9
	GRAZEX IIW	11.6	8.1	38.0	39.3	58.6	64.2
SG	SG 302BMB	11.5	9.1 9.4	35.3	35.3	54.9	60.3
	GBAZEX II	11.0	0.4 Q 2	34.9	37.2	55.4	61.0
		10.0	9.2 8.6	3/1	38.2	55 O	61.3
	NB280S	10.0	10.5	3/ 0	36.9	55.6	61.3
SC	SG 301BMR	87	0.1	35.3	38.4	54.6	61.6
50		11 1	0.1	34.8	37.7	55.4	61.0
		7.0	9.0	54.0	37.7	2.4	1 /
		1.2	0.4	0.7 NO	4.0 NO	2.0	1.4
	LOD (0.00)	1.5	0.1	01	БN	2.1	1.7
OVERALL	AVERAGE	7.9		34.4		57.4	
OVERALL	LSD (0.05)	1.1		4.1		3.0	

Table 2. Eastern Kansas Summer	Annual Forage Quality	y, Strong City, 2000.

		Grain	Days	Julian	Plant		
		Yield	to	Bloom	Height	Lodge	Stand
		(bu/a)	Bloom	Date	(in)	(%)	(%)
<u>CORN</u>							
CHECK	PIONEER 31B13	81	67	192	88		92
CHECK	MIDLAND 798	70	69	194	88		78
LFY	MBS3811xLFY554L	56	72	197	96		71
LFY	MBS3811xLFY497L	53	71	196	103		93
LFY	FR1064xLFY419L	31	71	196	100		88
	AVERAGE	58	70	195	95		84
	CV (%)	10	2	1	2		12
	LSD (0.05)	9	2	2	3		NS
FORAGE S	SORGHUM						
BUFFALO	CANEX BMB208	66	72	197	88	0	77
BUFFALO	CANEX II	63	72	197	94	0	83
SG	SG 100BMB	59	77	202	96	57	76
MMR	327/23	51	80	205	99	0	77
SG	SG 101BMR	47	75	200	97	47	74
BUFFALO	CANEX	47	72	197	86	0	76
CHECK	EARLY SUMAC	45	72	197	82	0	94
MMR	335/27				98	0	79
	AVERAGE	54	74	199	93	13	80
	CV (%)	9	3	1	3	88	13
	LSD (0.05)	7	4	4	4	16	NS
SORGHUN	I SUDAN						
BUFFALO	GRAZEX IIW				69		
BUFFALO	GRAZEX BMB737				67		
CHECK	NB280S				65		
MMR	327/BMR				64		
BUFFALO	GRAZEX II				64		
CHECK	PIPER				62		
SG	SG 301BMR				59		
SG	SG 302BMR				52		
• •	AVERAGE				63		
	CV (%)				8		
	LSD (0.05)				7		
OVERALL	AVERAGE	56	70	107	80	13	Q1
OVERALL	LSD (0.05)	11	NS	4	8	15	NS

Table 3. Eastern Kansas Summer Annual Forage Grain Yield,Maturity, Plant Height, Lodging, and Stand, Strong City, 2000.

		Yi	eld (lb DM/a)	Moistu	re (%)
BRAND	NAME	Total	Cut 1	Cut 2	Cut 1	Cut 2
		8 200			64	
	1866Bt	7 806			69	
LFY	MBS3811xLFY497L	7,795			65	
CHECK	MIDLAND 798	7,688			68	
LFY	MBS3811xLFY554L	5,975			72	
LFY	FR1064xLFY419L	5,553			63	
	AVERAGE	7,171			67	
	CV (%)	9			5	
	LSD (0.05)	1,008			5	
FORAGES	SORGHUM					
CHECK	EARLY SUMAC	9.276			75	
BUFFALO	CANEX BMR208	7,866			73	
MMR	327/23	7,856			77	
BUFFALO	CANEX II	7,840			74	
CHECK	ATLAS	7,678			77	
KAYSTAR	MILLENIUM	7,180			74	
SG	SG 100BMR	6,673			78	
BUFFALO	CANEX	6,649			73	
KAYSTAR	4EVERGREEN	6,349			82	
MMR	335/27	4,355			81	
	AVERAGE	7,172			76	
		9			2	
	L3D (0.03)	913			2	
<u>SORGHUN</u>	I SUDAN					
BUFFALO	GRAZEX IIW	11,513	8,528	2,985	82	76
CHECK	PIPER	10,904	7,004	3,900	82	75
TRIUMPH	SUPERSWEET 10	10,638	7,794	2,843	85	78
BUFFALO	GRAZEX II	10,552	8,065	2,487	83	77
MMR	327/BMR	9,504	7,855	1,649	83	75
TRIUMPH	SOONERSWEET	9,495	7,001	2,494	84	//
KAYSIAR		9,229	7,874	1,356	84	74
BUFFALO		8,906	7,184	1,722	83	74
5G 8C		8,891	6,708 7 146	2,182	84 07	75
		0,049	7,140	1,704	0/ 00	70
SG	SG 302BMR	0,03U 7 762	0,990 6 125	1,001	02 85	70 77
30	AVERAGE	0 580	7 357	2 222	80 87	76
	CV (%)	3,303 8	7	13	2	2
	LSD (0.05)	1,040	, 739	410	2	2
OVERALL		8,208			78	
OVERALL	LSD (U.U5)	1,195			3	

Table 4. Western Kansas Irrigated Summer Annual Forage Production, Colby, 2000.

		Protein (%)		ADF (%)		NDF (%)	
		Cut 1	Cut 2	Cut 1	Cut 2	Cut 1	Cut 2
CORN		0.0		00.4		54.0	
	FR1064XLFY419L	6.8		29.1		51.8	
		6.6 0.5		30.1		51.5	
		6.5 0.5		30.3		54.3	
		0.5		31.5		50.7	
CHECK		0.4 5 5		28.3		50.0 40.5	
CHECK		5.5		30.7		48.5	
		0.4		30.0		52.1	
		4.0		3.8 NO		3.0	
	LSD (0.05)	0.5		115		3.2	
FORAGE S	<u>SORGHUM</u>						
CHECK	EARLY SUMAC	6.3		37.2		55.1	
CHECK	ATLAS	6.1		32.8		56.0	
SG	SG 100BMR	6.1		38.6		57.7	
MMR	335/27	6.1		41.9		62.0	
KAYSTAR	MILLENIUM	5.8		38.3		59.5	
KAYSTAR	4EVERGREEN	5.7		44.1		63.7	
BUFFALO	CANEX II	5.7		36.9		53.3	
MMR	327/23	5.4		39.7		60.0	
BUFFALO	CANEX	5.4		31.4		49.6	
BUFFALO	CANEX BMR208	5.3		37.4		58.1	
	AVERAGE	5.8		37.8		57.5	
	CV (%)	4.4		7.1		3.4	
	LSD (0.05)	0.5		4.9		3.5	
SOBGHUN							
<u>SG</u>	SG 302BMB	8.8	0.2	37.2	36.8	58.8	63.8
SG	SG 301BMR	0.0 8.5	0.6	41 G	38.2	60.8	65.0
SG	SG 201BMR	0.J 8.4	9.0 7 7	33.0	38.1	58.7	64.8
KAVSTAR	MEGAGREEN	0.4 Q /	0.7	/1 3	37 /	62 1	64.7
CHECK		0.4 Q 1	9.7 10.2	41.3	37.4	67.0	65.2
		0.1 8.0	10.2 Q Q	40.0	38.0	64.3	64.6
BUEEALO		0.0 8.0	0.0 8 0	40.7	30.5	50.8	65.6
		7.8	0.3 8.6	42.6	37.7	63.1	63.7
		7.0	0.0 7 7	42.0	38.2	63.0	64.4
		7.6	7.7 Q Q	40.1 /1 Q	30.2	62.8	63.7
		7.0	0.0 7 0	41.0	29.1	02.0 62.0	64.2
		7.5	7.0	41.0	20.2	02.9 50.4	64.2
		0.9	9.4	40.4	29.3	60.0	64.1
		0.U	0.9	40.4	აo.ა ი ი	02.0	04.5
		4.0	2.0	4.2	J.∠	4.4 NO	
	LOD (0.00)	0.7	0.3	3.0	ы	IN2	IN2
OVERALL	AVERAGE	6.8		37.3		58.3	
OVERALL	LSD (0.05)	0.7		4.0		4.7	

Table E	Weetern	Vanaaa	است محم ما	C	A		O	Caller	0000
Table 5.	western	kansas	irrigated	Summer	Annual	Forage	Quality,	COIDY,	2000.

	,	. ,			· · · · , , _ ·		
		Grain	Days	Julian	Plant		
		Yield	to	Bloom	Height	Lodge	Stand
		(bu/a)	Bloom	Date	(in)	(%)	(%)
COBN							
CHECK	PIONEER 31B13	84	79	202	86	0	88
TRIUMPH	1866Bt	83	82	205	88	2	89
CHECK	MIDI AND 798	48	83	206	86	0	97
LFY	MBS3811xLFY497L	48	82	205	93	0	99
LFY	FR1064xLFY419L	42	80	203	90	15	84
LFY	MBS3811xLFY554L	24	83	206	96	0	91
	AVERAGE	55	82	205	90	3	91
	CV (%)	12	2	1	3	221	7
	LSD (0.05)	10	NS	NS	5	NS	NS
FORAGE S		F 4	04	000	00	00	64
RAISIAR		54	81	223	96	23	81
BUFFALU		49	//	219	104	3	88
SG	SG 100BMR	47	83	225	98	45	//
	327/23 OANEX DMD000	44	79	221	101	10	85
BUFFALO		44		219	97	8 7	90
		44	76 75	218	91	/	66
BUFFALO		41	75	217	96	0	67
CHECK	AILAS	30	85	227	100	0	60
KAYSTAR	4EVERGREEN				99	0	81
MMR	335/27				96	0	86
		44	/9	221	98	10	/8
		8	1	0	4	145	12
	LOD (0.05)	5	I	I	5	20	14
SORGHUN	<u>I SUDAN</u>						
CHECK	PIPER				93		
BUFFALO	GRAZEX IIW				84		
CHECK	NB280S				83		
MMR	327/BMR				78		
BUFFALO	GRAZEX II				77		
TRIUMPH	SOONERSWEET				77		
TRIUMPH	SUPERSWEET 10				73		
BUFFALO	GRAZEX BMR737				73		
SG	SG 301BMR				73		
SG	SG 302BMR				69		
KAYSTAR	MEGAGREEN				68		
SG	SG 201BMR				67		
	AVERAGE				76		
	CV (%)				8		
	LSD (0.05)				9		
OVERALL	AVERAGE	49	80	214	87	7	83
OVERALL	LSD (0.05)	8	NS	2	9	14	15

Table 6. Western Kansas Irrigated Summer Annual Forage Grain Yield,Maturity, Plant Height, Lodging, and Stand, Colby, 2000.

Appendix: Entrants and their entries in the Kansas summer	annual forage tests, 2000.
---	----------------------------

Company	Corn	Forage Sorghum	Sorghum-Sudan
Kaystar Seed PO Box 947 40329 us Hwy 14 E Huron, SD 57350 (605)352-8791 kaystarseed@basec.net		4EVERGREEN MILLENIUM ¹	MEGAGREEN
Lfy, L.L.C. 1281 Fourth Street Monterey, CA 93940 (831)657-9002 110341.175@compuserve.com	FR1064xLFY419L MBS3811xLFY497L MBS3811xLFY554L		
MMR Genetics L.L.C. PO Box 60 Vega, TX 79092 (806)267-2379		MMR 327/23 ¹ MMR 335/27 ²	MMR 327/BMR ¹
Garrison & Townsend, Inc. PO Drawer 2420 Hereford, TX 79045 (800)333-9048 bill@gtseed.com		SG 100BMR ¹ SG 101BMR ¹	SG 201BMR ¹ SG 301BMR ^{1 2} SG 302BMR ^{1 2}
Sharp Brothers Seed PO Box 140 Healy, KS 67880 (316)398-2231 sharpseed.com		CANEX BMR208 ¹ CANEX CANEX II	GRAZEX BMR ¹ GRAZEX II GRAZEX IIW
Triumph Seed Co., Inc. PO Box 1050 Hwy 62 Bypass Ralls, TX 79357 (806)253-2584 sales@triumphseed.com	1866Bt		SOONERSWEET SUPERSWEET 10
Checks entered by K-State	PIONEER 31B13 MIDLAND 798	ATLAS EARLY SUMAC	NB280S PIPER (SUDAN)

¹ Possesses brown midrib trait.

² Photoperiod sensitive, flowers in response to shorter days.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan 66506 SRP 872 January 2001

It is the policy of Kansas State University Agricultural Experiment Station and Cooperative Extension Service that all persons shall have equal opportunity and access to its educational programs, services, activities, and materials without regard to race, color, religion, national origin, sex, age, or disability. Kansas State University is an equal opportunity organization. These materials may be available in alternative formats. 800