
2000 GREAT PLAINS CANOLA RESEARCH

Report of Progress 862 Kansas State University Agricultural Experiment Station and Cooperative Extension Service

CONTENTS

INTRODUCTION Marketing Canola Canola Varieties	
KANSAS CANOLA PRODUCTION CENTERS Procedures Variety Performance Tests Table 1. Descriptions of the three Locations for the 1999-2000 Kansas	3
Canola Production Centers	3 4 4
Results and Discussions Conditions at Individual Locations Variety Performance Tests Seeding Rate Study Nitrogen Rate Study Table 2. Results of the Variety Performance Test in the 1999-2000 Canola Production Center,	5
Pawnee County, KS. Table 3. Results of the Variety Performance Test in the 1999-2000 Canola Production Center, Kingman County, KS.	6 6
Table 4. Results of the Seeding Rate Test in the 1999-2000 Canola Production Centers, Pawnee County and Kingman County, KS Conclusions Table 5. Results of the Nitrogen Rate Test in the 1999-2000 Canola Production Centers,	7 7
Pawnee County and Kingman County, KS	-
2000 NATIONAL WINTER CANOLA VARIETY TRIAL; Great Plains Locations Objectives Test Locations Procedures 1999-2000 Growing Conditions Acknowledgements Table 6. Yield Results from the 1999-2000 National Winter Canola Trial Sites in the Great Plains Region. Figure 1. Summary of Winter Canola Performance Results in the Great Plains, 1996-2000 Table 7. Sources of Seed for Entries in the 1999 National Canola Variety Trial.	9 9 9 9 9 9 10
CANOLA COST-RETURN BUDGET Table 8. Factors Used for Cost-Return Budget. Table 9. Cost-Return Projection for Canola.	14 14

On the map, stars show locations of the national trial, and circles show locations of the production centers.

2000 Great Plains Canola Research

Charlie Rife, Gerald Warmann, and William Heer²

SUMMARY

This report includes results from the Great Plains locations of the 2000 National Winter Canola Variety Trial and the Kansas Canola Production Centers. During the 1999-2000 growing season, canola production centers were established in Saline, Pawnee, and Kingman counties, Kansas. Results are given for performance of eight varieties and studies of seeding rate and nitrogen rate at those centers. Finally, an example of a cost-return budget for canola is presented.

¹Contribution no. 01-184-S from the Kansas Agricultural Experiment Station.

²Canola Breeder, Manhattan; Extension Agricultural Economist, Hutchinson; and Agronomist-in-Charge, South Central Experiment Field, Hutchinson.

Publications from K-State Research and Extension are available on the World Wide Web at <u>http://www.oznet.ksu.edu</u>

Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name the work, Kansas State University, and the date the work was published.

Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

2000 Great Plains Canola Research

INTRODUCTION

Canola is a specific crop developed from rapeseed. Canola also has been called double zero rapeseed because of the low contents of erucic acid (less than 2 percent in the oil) and glucosinolates (less than 30 micromoles per gram in the oil-free meal). Food and oil-processing industries have a great interest in canola, because it produces a high-quality oil that is lower in saturated fat than other sources of dietary fats. The meal remaining after oil extraction is used as a protein supplement by the livestock industry.

Production of rapeseed was first reported in Europe in the 13th century, but it probably has been cultivated in Asia for thousands of years. It always has been used in Asia for cooking oil, but it was used originally in Europe as a source of lamp oil and lubricant. During World War II, Canada grew millions of acres to provide a marine lubricant, but production declined as diesel replaced steam engines.

The first oilseed rape with low levels of erucic acid in the oil was developed in Canada in 1957. Interest in rapeseed increased, and Canadian production reached 1 million acres in 1965. In 1971, 'Span', the first low erucic acid variety, was released. Three years later, 'Tower' was released. It is low in both erucic acid and glucosinolates and became the first true canola variety. The term canola was trademarked by the Western Canadian Oilseed Crushers Association in 1978 and still is used to describe rapeseed that is genetically low in erucic acid and glucosinolates. In 1985, the FDA in the United States ruled that rapeseed oil with less than 2 percent erucic acid is safe for human consumption. One year later, the American Heart Association urged Americans to reduce their saturated fat intake. Canola oil contains 6 percent saturated fat, the lowest level of any commercially available vegetable oil.

Canola oil consumption increased from zero prior to 1986 to the equivalent of over 2 million acres of production in 1994. This represented an increase in consumption of 50% since 1992. Most of this oil was imported from Canada. Canola is one of the few new crops that possessed a substantial market before its production was established. United States canola production tripled over 3 years and reached 1.13 million acres in 1998, but consumption still outpaces production at the rate of nearly 3 to 1. Most of this production is from spring types in the northern Great Plains states of North Dakota, Montana, and Minnesota. Over the past few years, interest in winter cultivars also has increased in areas where production is feasible, especially the Pacific Northwest, Southern Great Plains, and the Southeast.

Canola-quality seed has been developed in three *Brassica* species *Brassica napus*, also called Argentine rape, summer rape, winter rape, or Swede rape, was the first and is the most common canola grown. *Brassica rapa*, also called *B. campestris*, Polish rape, summer turnip rape, or field mustard, has many canola-quality cultivars and is grown on a large acreage where it is adapted. *Brassica juncea* (yellow mustard) lines with canola quality have been identified. Cultivars are just now being released, and all *B. juncea* lines are spring types. Most winter canola varieties grown in the United States have been developed from *B. napus*

Winter canola yields are generally 30% greater than yields of the spring types. Winter canola is planted in late summer. The plants need to reach the 6 to 8 true-leaf stage and about 8 to 10 inches in height before freeze down to increase winter survival. Plants overwinter as rosettes and bolt early the next spring. Harvest takes place about the same time as winter wheat harvest in a given area.

Canola research began in the United States in the late 1980's. Industrial rapeseed had been investigated prior to this, but because of the limited demand for this product, interest was low. Winter canola production was attempted in the late 1980's but was not successful. The failure was primarily due to the lack of adapted varieties, the lack of management recommendations for the area, and the lack of a local market for the Since that time, canola-quality lines crop. have been developed that are significant improvements over previously tested Advancements in production varieties. research have led to management recommendations consistent with the conditions of the region. Increased oil consumption has led to increased demand for canola seed and a market interest by oil processors.

Canola production would fit well into Great Plains agriculture. Canola makes an excellent rotational crop with winter wheat. Yields of wheat following canola are reported to be 8 to 12% better than yields of wheat following wheat. Because canola is a broadleaf crop, more effective and less expensive herbicides can be used to control grass weeds. No major diseases are common between the two crops, so canola can help break some disease cycles. Canola also is produced with the same equipment used for small grains. A major investment in equipment is not needed to try a small canola acreage. Because canola is an oilseed, its commodity price is not tied to that of grains, and it can be used to help spread economic risk to more than one commodity class.

Marketing Canola

Favorable loan deficiency payment rates have given an economic incentive to canola production over the past few years. During the summer of 2000, the commodity price plus the loan deficiency payment added up to \$4.80 per bushel. Colorado Mills, Lamar, CO, began crushing canola and other oilseeds in 1999 and was the delivery point for the 1999 and 2000 crops from the southern Great Plains. Colorado Mills coordinated back haul shipping, and the crop was picked up at the farm and delivered to Lamar. In the future, several elevators throughout the region will serve as delivery points and will coordinate delivery to Lamar or other terminal markets. Several other oilseed crushers in the Great Plains are capable of crushing canola and will do so when sufficient quantities become available.

Canola Varieties

A canola breeding program was established at Kansas State University in 1992 to develop varieties adapted to the southern Great Plains. Since that time, two varieties have been released and are now commercially available. 'Plainsman' was released in 1998 has performed well in northern Kansas and areas in the high plains. 'Wichita' was released in 1999 and has performed better in southern Kansas and Oklahoma. Certified seed of both of these varieties is available from Kansas Foundation Seed Center. Manhattan, KS. Additional varieties are scheduled for release in the next few years. These include lines with increased yield potential for the region and lines with tolerance to sulfonvlurea herbicides (e.g., Glean, Amber, Finesse). This tolerance will allow canola to be included more easily in a rotation with winter wheat. Other canola varieties that were not developed in the region are available, and a list of those tested in 1999-2000 and possible sources of seed can be found in Table 7 at the end of this publication. Additional information on canola production can be found in the 'Canola Production Guide for the Great Plains', a special publication of the Kansas Agricultural Experiment Station, which is available at county extension offices and from the first author.

KANSAS CANOLA PRODUCTION CENTERS

Introduction

Canola production centers were established in Kansas for the first time during the 1999-2000 growing season. The primary goals were to perform research that would be beneficial for improving canola production in the region and to use these centers as an extension tool to help transfer the results to current and new canola growers. These centers were placed on farmers' fields in potential canola-growing regions.

Procedures

Production centers were established at three locations: site 1 in Saline Co. (3 miles east of Salina), site 2 in Pawnee Co. (1 mile west of Ft. Larned), and site 3 in Kingman Co. (6 miles south of Murdock). Site information can be found in Table 1. All plots were planted with a plot drill (6 rows, 8 inches) to a length of 40 feet. Plots were trimmed later to a harvest length of 34 feet. All studies included four replications. The seeding rate was 5 lb/a (except for the seeding rate study), and nitrogen was applied to all plots (except the fertility study) at rates of 30 lb/a in the fall and 50 lb/a in the spring. The tests were sprayed as needed with Capture 2EC for insects (cut worms and aphids) and Assure II for grassy weeds. The tests were harvested, direct cut at maturity, with a plot combine.

Variety Performance Tests

The same eight lines were grown at each location. Wichita, Plainsman, and KS1701 were developed by Kansas State University. Spectrum Crop Development of Ritzville, WA, markets Casino. Ceres and Olsen are marketed by Integra Seeds of Bozeman, MT. Arctic is marketed by Pride Seeds, Chatham, ON. Jetton was marketed by AmeriCan Seeds but is no longer commercially available. Wichita, Plainsman, and Casino have demonstrated excellent winter hardiness in the canola-growing areas

Location	Dates of	Soil Type				1		Elevation and				
and	Planting	and Previous		Soil Test								
Cooperator	and Harvest	Сгор	Ν	P	K	S	pН	Latitude				
Saline County	03-Sep	Detroit silty clay loam	6	398	327	4.7	6.2	1200 ft				
Pete Roberts	not harvested	wheat						380 46'				
Pawnee County	02-Sep	Harney silt loam	3.5	20	431	2.1	5.9	2100 ft				
John Haas	21-Jun	fallow						38o 12'				
Kingman County	15-Sep	Farnum sandy loam	4.6	35	101	2.5	6.2	1570 ft				
Leon Sowers	12-Jun	wheat						37o 31'				

of the southern Great Plains. Ceres winter hardiness is not quite as good but is sufficient for most years in south-central and southeast Kansas and the eastern two-thirds of Oklahoma. Jetton possesses excellent yield potential, but its winter hardiness is suspect under normal winter conditions in many areas. Olsen and Arctic have not been tested under adverse conditions in the Great Plains, so their winter hardiness levels are unknown.

Seeding Rate Study

The recommended seeding rate for canola has been 5 lb/a. This recommendation resulted from research that showed no difference in seed yield with seeding rates ranging from 3 lb/a to 10 lb/a. However, this research was performed outside of the Great Plains region. Questions about seeding rates by growers in the Great Plains demonstrated the importance of validating previous research under local conditions. The tests were established in a split plot design with seeding rates as the whole plots and cultivars as the subplots. Four seeding rates of 2.5, 5, 7.5, and 10 lb/a were used. Wichita and Plainsman were used in these tests.

Nitrogen Rate Study

Nitrogen (N) recommendations used in the southern Great Plains also are the results of research performed outside of the region. In previous studies, high levels of available N in the fall have led to excessive fall growth and reduced levels of winter hardiness. The tests were established using a split-split plot design with fall-applied N rates as the whole plots, spring-applied N rates as the subplots, and cultivars as the sub-subplots. Nitrogen was applied at rates of 25 and 50 lb/a in both the fall and the spring. The control plots received no N. The cultivars used were Wichita and Plainsman.

Results and Discussions

Conditions at Individual Locations

Saline County. Available moisture was sufficient to germinate the seeds, and the plants at this location established rapidly. After establishment, moisture was limited until a rain in mid-October, so plants went into the winter much smaller than desired. Mild winter conditions allowed the plants to come through the winter with near 100% survival. Cutworms invaded the plots in early spring and resulted in substantial damage before pesticides could be applied. The tests were abandoned in late spring because of this damage.

Pawnee County. Establishment was rapid, and sufficient moisture was available to allow for excellent growth in the fall. Cutworms and aphids were present, and the plots were sprayed, but some damage was observed. A very high incidence of aster vellows was observed in the plots in the spring and contributed to a significant yield reduction. This disease is vectored by leafhoppers in the fall. The combination of a long, mild fall and the fact that this small area of plots represented the only lush growth in a large area accounted for the abnormally high incidence. Aster yellows also was observed in commercial fields in the region, but the large acreage of plants limited the amount of the disease, and its effect on seed yield was insignificant.

<u>Kingman County.</u> Establishment was rapid, and fall growth was sufficient for the plants to enter the winter. Cutworms and aphids were also present at this location, and the plots were sprayed with Capture. Volunteer wheat and winter annual brome grasses were controlled with Assure II. Insect damage was observed throughout the tests but was sufficient to cause us to abandon the results only in the first replication.

Variety Performance Tests

Winter conditions were mild at all locations, and all lines had 100% survival. Yields were less than expected, especially in Pawnee Co., and this was due primarily to the high levels of aster yellows (Table 2). Plainsman topped the test at Pawnee Co. with yields of about 23 bu/a. At these yield levels, Plainsman would have had an economic return similar to that of a 50 bu/a wheat crop. Wichita was the top-yielding variety at the Kingman Co. test, with yields of about 34 bu/a (Table 3). The economic return of these yields would be similar to that of a 74 bu/a wheat crop. Casino and Ceres were not significantly different from the top-yielding line at either location. Both varieties previously have shown winter hardiness levels that are high enough for most years in south-central and southeast Kansas as well as areas south of Kansas. Plainsman historically has performed well in areas near or north of I-70 and in the High Plains. Wichita consistently has outperformed most lines in southern Kansas.

Seeding Rate Study

Conditions at seeding were excellent, and all plots were established with good stands (Table 4). Establishment at the Saline County location was also excellent; all plots had stands of near 100%. However, the test later was abandoned, and the data are not reported in the table. The same trends were observed at both the Pawnee and Kingman county locations, so the data were combined. The final stands of the 5, 7.5, and 10 lb/a seeding rates were significantly greater than the stands with the 2.5 lb/a seeding rate, but these differences were not observed in the final yields. Plant heights did decrease as seeding rates were increased. This likely was due to the ability of canola plants to compensate for reduced stands. No differences in harvest moisture content or test weights were attributed to seeding rates. Test weights did tend to decrease slightly as seeding rate was increased, but these differences were not significant. Expected differences were observed between Plainsman and Wichita. Yields of Wichita were greater at the Kingman Co. site, and Plainsman outyielded Wichita in Pawnee Co. Plainsman was 6 inches taller than Wichita and had about 2% higher moisture content at harvest, which was due to its delayed maturity.

Canola possesses an excellent ability to compensate for reduced stands. These results support the recommendation that increasing the seeding rate will not increase final yields. The 10 lb/a seeding rate yielded only about 0.6 bu/a more than the 2.5 lb/a seeding rate in these studies. The return from this increase would be much less than the additional cost of the seed.

Nitrogen Rate Study

As with the seeding rate study, the same trends were observed at both the Pawnee and Kingman county locations, so the data were combined. Excellent conditions at seeding allowed for good stands, and no significant differences were observed for either N rates or variety treatments (Table 5). Mild winter conditions allowed all treatments to come through the winter with no death loss. Previous studies have shown a correlation between increased levels of fall-applied N and increased winter death loss, but this was not observed in these

Variety	Yield	Winter Survival	Fall Stand	Aster Yellows	Plant Height 1/	Shatter- ing	Moisture	Test Weight
	lb/a	%	%	%	in	%	%	lb/bu
Plainsman	1157	* 100	90 *	12 *	59 t	0 *	5.6 *	45.1
Jetton	964	* 100	85 *	21	48 s	1 *	6.8 *	45.4
Casino	921	* 100	88 *	24	55	1	5.9 *	46.0
Ceres	909	* 100	88 *	31	51	2	6.1 *	46.8
Wichita	779	100	93 *	25	51	1	6.1 *	44.7
Arctic	746	100	88 *	23	56 t	1	6.2 *	46.4
Olsen	694	100	88 *	24	48 s	2	6.3 *	43.9
KS1701	524	100	78	29	52	0 *	9.6	44.2
Mean	837	100	87	24	52	1	6.5	45.3
LSD	264	NS	9	7	3	1	2.4	2.1
C.V. (%)	21		7.1	21	3	72	25.0	3.2

Table 2. Results of the Variety Performance Test in the 1999-2000 Canola Production Center, Pawnee County, KS.

* Upper LSD group - Differences among those marked with an asterisk are not statistically significant.

1/ Values marked "s" are not statistically different from the shortest value, and those marked "t" are not statistically different from the tallest value.

Variety	Yield	Winter Survival	Fall Stand		Plant Height		Moisture		Test Weight	
	lb/a	%	%		in		%		lb/bu	
Wichita	1712 *	[*] 100	100	*	44		10.7	*	45.6	
Ceres	1647 *	* 100	100	*	42	s	13.2		46.4	
Olsen	1597 *	[*] 100	95	*	43	s	15.3		46.6	
Casino	1594 *	* 100	86		47	t	15.8		47.0	*
Jetton	1441	100	95	*	41	s	12.1	*	45.0	
Arctic	1272	100	95	*	43	s	11.6	*	47.8	*
Plainsman	1158	100	100	*	44		13.1		45.7	
KS1701	470	100	83		44		13.7		48.4	*
Mean	1361	100	94		43		13.2		46.5	
LSD	271		6		3		2.2		1.4	
C.V. (%)	13.1		4.5		4.7		11.4		2.1	

Table 3. Results of the Variety Performance Test in the 1999-2000 Canola Production Center, Kingman County, KS.

* Upper LSD group - Differences among those marked with an asterisk are not statistically significant.

1/ Values marked "s" are not statistically different from the shortest value, and those marked "t" are not statistically different from the tallest value.

			Fall	Plant		Test
Rate	Variety	Yield	Stand	Height	Moisture	Weight
		lb/a	%	in	%	lb/bu
2.5 lb/a	Mean	985	85	51	8.5	45.2
5.0 lb/a	Mean	962	95	49	8.7	45.1
7.5 lb/a	Mean	849	95	48	8.7	44.7
10 lb/a	Mean	1018	97	48	8.4	44.1
LSD (0.05)		NS	9	2	NS	NS
Mean	Plainsman	902	93	52	9.6	44.3
Mean	Wichita	1004	93	46	7.5	45.2
LSD (0.05)		NS	NS	2	1.5	NS
Mean	Mean	953	93	49	8.6	44.7
C.V. (%)		17.6	3.9	4.0	17.2	4.3

Table 4. Results of the Seeding Rate Test in the 1999-2000 Canola Production Centers,

tests. Seed yields at both locations were less than expected. Plant vigor in Kingman County was poor. This was likely the result of earlier damage caused by cutworms and aphids. The test in Pawnee County had good plant growth and vigor, but yields were reduced because of a high incidence of the disease aster yellows. With the conditions of the 1999-2000 growing season, N applied in the fall had an equal effect on final seed vield as spring-applied N. Under these conditions, each additional lb of l N resulted in about 2.5 lb of additional seed yield up to 75 lb N. In these tests, plant height was not affected by N rates. However, it is well known that excess N can result in excessive plant growth. Test weights and harvest moisture also were not influenced by N rates in this study

Conclusions

As in previous research, Wichita performed well in a southern environment, that is prone to spring heat. Plainsman outperformed other lines at the more northern testing location. Both Casino and Ceres also performed well.

No differences in seed yield were detected between the four seeding rates evaluated in these studies. The current recommendation of 5 lb/a seems to be appropriate for the Great Plains.

Because canola produces seed that is very high in protein, it has a higher N requirement than winter wheat. Based on the results from this and other studies, a recommendation of 2.5 to 3 lb of actual N per bu of expected yield should be a good rule of thumb. With yield goals of 30 to 40

	Spring- Applied N		Fa	all-Applied N lb/a			
	lb/a		0	25	50		Mean
		· · · · ·		Seed Y	'ield - lb/a		
	0		865	893	948		902
	25		881	967	1081		977
	50		975	1041	998		1005
	Mean		907	967	1009		961
	LSD (0.05)			97			
	CV (%)			13.9			
	,						
				Fall	Plant	I	Test
			Yield	Stand	Height	Moisture	Weight
all N	Spring N	Variety	lb/a	%	in	%	lb/bu
0	*	*	907	93	48	8.4	46.4
25	*	*	967	93	49	8.4	46.4
50	*	*	1009	93	49	8.0	45.6
	LSD (0.05)		NS	NS	NS	NS	NS
*	0	*	902	93	48	8.3	46.2
*	25	*	977	93	49	8.4	46.0
*	50	*	1005	93	48	8.1	46.3
	LSD (0.05)		95	NS	NS	NS	NS
*	*	Plainsman	949	92	51	8.6	45.5
*	*	Wichita	973	94	46	7.9	46.8
	LSD (0.05)		NS	NS	1	0.5	0.6

Table 5. Results of the Nitrogen Rate	Test in the 1999-2000 Can	ola Productior	n Centers, Pawnee County and
Kingman County, KS			·

bu/a, N rates of 75 to 120 lbs/a should be used. Ideally, 25% of the N should be applied in the fall, and the remainder applied in early spring.

Acknowledgements

This work was funded in part by a grant from the Kansas Department of Commerce and Housing, Agricultural Products Development Division, and the Kansas Agricultural Experiment Station. Three farmer cooperators, Leon Sowers, John Haas, and Pete Roberts, provided the land and field preparation work for this project.

2000 NATIONAL WINTER CANOLA VARIETY TRIAL Great Plains Locations

Objectives

The objectives of these tests are to evaluate germplasm over a wide range of environments, determine what canola varieties and experimental lines are adapted to what areas, and to increase the visibility of winter canola across the regions. The National Winter Canola Variety Trial (NWCVT) has been coordinated from Kansas State University since the 1994-95 growing season. The NWCVT was established to evaluate released cultivars and material that had been selected and advanced and has potential to become new released canola varieties. Information obtained from these tests will help determine what experimental lines should be released and where released cultivars might be marketed. Over the past few years, this nursery has expanded the number of environments and now has locations in the Great Plains, Midwest, and Southeast. The wide diversity in environments has increased our knowledge and understanding of rapeseed germplasm for use in the eastern half of the United States.

Test Locations

Of the 17 tests distributed in 1999, all but two were established successfully (Ottawa and Tribune, KS). Only one location did not survive the winter (Portageville, MO). Three other sites were lost during the spring growing season (Ft. Collins, Rocky Ford, and Walsh, CO), leaving yield data from 11 locations in 4 states (Colby, Garden City, Hutchinson, Manhattan, and Parsons, KS; Columbia and Novelty, MO; Lincoln and Sidney, NE; and Lubbock and Munday, TX).

Procedures

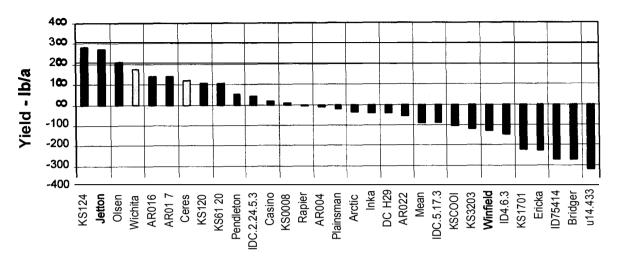
The NWCVT was distributed to 17 locations in 5 southern Great Plains states during the fall of 1999. This test included 14 released varieties and 17 experimental Management guidelines were lines. supplied to each cooperator, but past experience at that locality was used for final management decisions. All tests were planted in small plots (approximately 100 square feet) and replicated three times. Results for yield from the 11 harvested locations are found in Table 6. Lines are listed in order from highest to lowest relative yields for 2000, but actual yields for each location also are presented. The summary of the results for yield, winter survival, plant height, and flowering date for the Great Plains locations over the past 5 years are found in Figure 1.

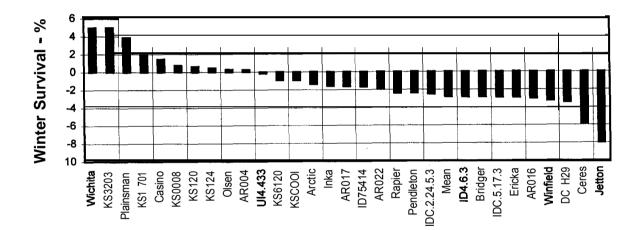
1999-2000 Growing Conditions

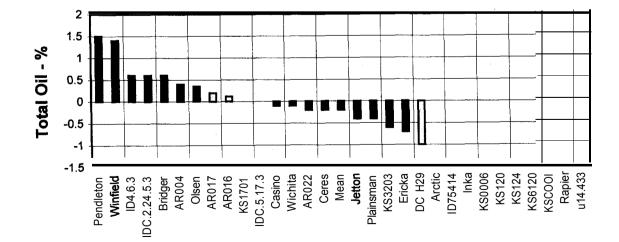
Moisture conditions at most locations were favorable to facilitate establishment. Conditions over the winter months were very mild and drier than normal at most locations. Dry conditions continued into the spring and resulted in reduced yields at several locations. Excessive high temperatures in early June also contributed to reduced yields at several locations.

Acknowledgments

This work was funded in part by the National Canola Research Program, United States Department of Agriculture, Cooperative States Research Program and the Kansas Agricultural Experiment Station. Assistant Scientist Cindy LaBarge, as well as student workers Gaylon Corley and Aaron Koehn, helped with planting, care, harvest, and data preparation of some of these tests.


Line	Colby KS	Garden C. KS	Hu	utchinson KS	1	Manhattan KS		Parsons KS		Columbia MO		Novelty MO		Lincoln NE		Sidney NE	Lubbo			Munday TX		2000 Mean	1/
										lh /a												0/	
KSM3-1-124	1381	* 843	*	2396	*	1443	*	1426	*	lb/a * 1843	*	2845	*	2141	*	505	* 3	47	*	1062	*	% 131	*
ARC91016-41L-2	1278			2333		1719		1641		1136		2846		1890		354		59		1312		130	
ARC91017-44E-5	1125	1105		2268		1393		1086		1765 *	*	2692		2146		296		33	*	1043		122	
Jetton	1164			2085		1111		1107		1808 *		3258	*	1897		273		68		1161		122	
Wichita	1089	787		2128		1369	*	1551	*	1425 *	ł	3007	*	1662		407		33		929		118	
KS6120	1194	* 890	*	1882		1558	*	1123		1431 *	k	2539		2071	*	353	4	17	*	809		117	
ARC91022-59L-4	978	928	*	2148		1482	*	1202		1428 *	k	2713	*	2324	*	306	2	69		1160	*	117	
Pendleton	1019	696		2246	*	1205		1097		1359		2478		1873		785	* 2	63		800		117	
ARC91004	947	682		2312	*	1594	*	994		1095		3034	*	1784		553	* 2	91		987		114	
KSM3-1-120	1079	741	*	2328	*	1249		1094		1491 *	*	2836	*	1960	*	274	4)5	*	812		111	
Casino	1350	* 658		2587	*	1512	*	1362	*	829		2795	*	1988	*	150	3	54	*	664		106	
Winfield	1441	* 552		2404	*	1506	*	1197		1196		3138	*	1986	*	62	23	39		803		103	
KSB0008	1083	707	*	1640		1011		1087		1419 *	k	2851	*	2006	*	237	3	17	*	836		102	
Ceres	1129	477		2516	*	1257		968		624		2272		2034		499	* 2	76		731		101	
Olsen	972	495		1695		1289								2090	*	411						101	
Rapier	771	460		2077		1144		871		1280		2889	*	2241	*	451	2	61		609		99	
DCH 29	1031	812	*	2105		1247		1078		902		2294		2015		144		39		943		99	
Arctic	1142	411		1696		1000		978		1609 *		2621		2022	*	388		15		631		97	
UI2.3453	797	500		1760		985		1482		1515 *		2788	*	1615		228		44		597		97	
KS3203	1128	597		1497		1002		1302	*	1786 *	k	2403		1220		210	34	46	*	595		97	
Plainsman	1103	927	*	2099		1153		1289	*	1629 *	k	2704	*	1274		74	24	40		563		97	
Inka	884	479		1920		1046		1370	*	886		2727	*	2061	*	221	3	01		775		96	
KSC001	950	531		1994		983		1241	*	1197		2195		1502		431	2	24		690		95	
Bridger	907	823	*	1396		826		997		1137		2734	*	1903	*	305	2	24		685		92	
UI.3.426								931		556		1866					2:	23		976		85	
UI5.17.3.5	762	479		1810		1124		964		723		2602		1755		309	2	26		489		84	
Ericka	828	354		1423		689		768		1330		2264		1553		208	2	95		714		81	
UI4.433	635			1391		792		891		664		2407		1719		251	2)5		636		77	
UI4.634	552	342		1311		802		978		948		2021		1605		313	2	54		435		75	
UI76.75414	822	366		1653		760		998		1202		2138		1259		139	2	09		582		75	
KS1701	1102	170		1794		805		899		919		1479		923		6	1:	20		277		59	
Mean	1021	650		1989		1174		1171		1238		2581		1817		305	2	36		777		103	
LSD (0.05)	282	358		407		457		418		472		561		444		305	1	52		276		10	
CV (%)	16.9	33.7		15.2		23.8		27.0		23.3		13.3		14.9		61.3	32	.6		21.7		25.8	


Table 6. Yield Results from the 1999-2000 National Winter Canola Trial Sites in the Great Plains Region.


* Upper LSD group - Differences among those marked with an asterisk are not statistically significant.

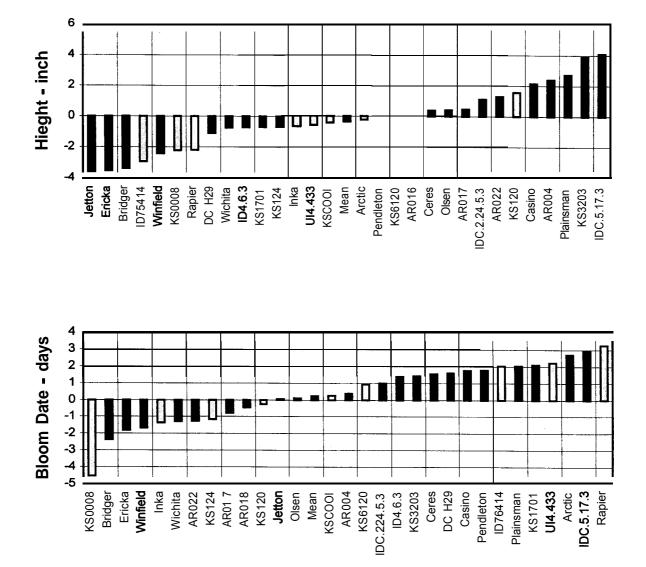

1/ Mean yields presented as the percent of the average of Bridger, Ceres, Plainsman, and Wichita.

Figure 1. Summary of Winter Canola Performance Results in the Great Plains, 1996-2000.

Note: Values are averages of the differences between each cultivar and the mean of Bridger, Ceres, Plainsman, and Wichita for yield (lb/a), winter survival (%), total oil content (%), plant height (inches), and 50% bloom date (days). The number of observations for each trait is represented by the different colors of the bars (as shown at the right).

Note: Total oil data for 1999-2000 were not available at printing.

Table 7. Sources of Seed for Entries in the 1999 National Canola Variety Trial.

Seed Source	Entries
Habernick Seeds P.O. Box 40 Bozeman, MT 59771-0040	Ceres Olsen
Kansas State University Department of Agronomy Throckmorton Hall Manhattan, KS 66506-5501	Plainsman Wichita KS1701 KSM3-1-124
Pride Seeds PO Box 1088 Chatham, ON M7M 5L6	Arctic
McKay Seed Company 2945 Road N N.E. Moses Lake, WA 98837	Ericka Pendleton
Spectrum Crop Devlopment Post Office Box 541 Ritzville, WA 99169	Casino Inka Rapier
University of Arkansas Department of Plant Science Fayetteville, AR 72701	ARC91004 ARC91016-41L-2 ARC91017-44E-5 ARC91022-59L-4
University of Idaho Dept. of Plant, Soil, and Envir. Science Moscow, ID 83843-4196	Bridger UI.3.426 UI2.3453 UI4.433 UI4.634 UI5.17.3.5 UI76.75414

CANOLA COST-RETURN BUDGET

Cost-Return Projections

Cost-return projections provide estimated costs and returns for forward farm planning. They are specific to the crop and the region of Kansas. Production costs for individual farmers will vary considerably with the amounts of fertilizer and chemicals applied, the type and amount of farm machinery owned, and land cost.

Yield Level

Cost per bushel and net returns in crop production are highly dependent on yields. The following estimated budget includes three different yield levels. These are intended to represent expected yields from land of different qualities for a given level of management. Land values, government payments, and various inputs vary as yield levels vary. Multi-Peril Crop Insurance (MPCI) was not included in the budget as an input expense, because yields reflect an average of all years (good and bad). If crop insurance is included as an input expense, then an expected value for indemnity payment should be included in the returns section. Historically, MPCI indemnity payments have exceeded premiums because of government subsidies.

Variable and Fixed Costs

Table 8 shows some of the assumptions used to develop this budget. The lime amount assumes that 1 ton of effective calcium carbonate (ECC) is applied every 4 years.

Variable costs, such as labor, fertilizer, repairs, and fuel-oil, are costs that vary with the level of production. Labor requirements include time for management and marketing, whether operator or hired labor. Interest on variable costs is estimated by using one-half of the accumulated variable costs for the year.

Fixed costs do not vary with the level of production and are incurred by virtue of owning assets such as land and machinery. Machinery investment was estimated for an average-sized farm to meet tillage, planting, and harvest requirements. Salvage value of machinery was assumed to be 35 percent of the initial investment. Interest on machinery was calculated on one-half the average investment [(initial investment + salvage value) \div 2]. Land costs are based on owned land. If the land is rented, the cost of rent per acre should be listed on line 18, and no taxes or interest shown on lines 16 and 17. If land is rented on a crop-share basis, rent is reflected in the yield.

Profit and Return Factors

Net return on investment is the percentage return on investment. This measure enables comparisons to be made among other enterprises and investment alternatives. If the land market is efficient, the return on investment for land of different qualities should be approximately equal. If the return on investment from lower quality land is low relative to the returns on investment from land of higher quality, this is a signal that the land is overpriced relative to better quality land.

Table 8. Factors Used for Cost-Return Budget.

	Yield	Level (I	<u>b/a)</u>	
Item	1,200	1,500	1,800	Cost
Fertilizer				
N (Anhy.)	30	40	50	\$0.11/lb
N (Dry)	10	10	10	\$0.20/lb
Р	20	20	20	\$0.22/lb
K	0	0	0	\$0.14/lb
Lime	500	500	500	\$0.01/lb
Seed, lb/acre	5	5	5	\$2.00/lb
Labor	2.00	2.20	2.40	\$10.80
Land value/acre	\$509	\$636	\$764	
Land interest rate	e			6.00%
Land real estate t	ax rate			0.50%
Machinery invest	ment			\$225
Machinery life				10 yrs
Salvage value				35.00%
Interest rate on n	nachine	ry		9.00%
Insurance rate of	n machi	nery		0.25%
Interest rate on v	ariable	costs		9.00%

Table 9. Cost-Return Projection for Canola.

	Y	Your		
	1,200	1,500	1,800	Farm
VARIABLE COSTS PER ACRE: 1/				
1. Labor	<u>\$ 21.60</u>	<u>\$ 23.76</u>	<u>\$ 25.92</u>	
2. Seed	10.00		10.00	
3. Herbicide	7.50	7.50	7.50	
4. Insecticide				
5. Fertilizer and Lime	14.70	15.80	16.90	
6. Fuel and Oil	5.61	6.00	6.39	
7				
8. Machinery and Equipment Repairs	12.86	13.75	12.86	
9				
10. Crop Insurance				
11. Drying				
12. Custom Hire				
			7.00	
	7.00	7.00	<u> </u>	
15. Interest on 1/2 Variable Costs	3.57	3.77	<u> </u>	
A. TOTAL VARIABLE COSTS	<u>\$ 82.83</u>	<u>\$ 87.58</u>	<u>\$ 92.33</u>	
FIXED COSTS PER ACRE: ^{1/}				
16. Real Estate Taxes	2.55	3.18	3.82	
17. Interest on Land ^{2/}	30.54	38.16	45.84	
18. Rent for Rented Land				
19. Depreciation on Crop Machinery	14.63	14.63	14.63	
20. Interest on Crop Machinery ^{3/}	13.67	13.67	13.67	
21				
22				
23. Insurance on Machinery	0.56	0.56	0.56	
B. TOTAL FIXED COSTS	<u> </u>	<u> </u>	<u> </u>	
	<u>\$ 01.94</u>	<u> </u>	<u>v 10.52</u>	
C. TOTAL COST (A+B)	<u>\$144.77</u>	<u>\$157.78</u>	<u>\$170.85</u>	
D. YIELD PER ACRE	1,200	1,500	1,800	
	\$ 10.00	\$ 10.00	<u>\$ 10.00</u>	
NET GOVERNMENT PAYMENT ^{4/}	<u>\$ 11.95</u>	\$ 12.99	\$ 14.03	
G. INDEMNITY PAYMENTS	\$	\$	\$	
H. MISCELLANEOUS INCOME	<u>\$</u>	\$	<u>\$</u>	
. RETURNS PER ACRE ([(DxE)+F+G+H]	<u>\$131.95</u>	<u>\$162.99</u>	<u>\$194.03</u>	
	<u>_101.00</u>	<u>\\\\</u>	<u>\u04.00</u>	
J. RETURNS OVER VARIABLE COSTS (I-A)	<u>\$ 49.12</u>	<u>\$ 75.41</u>	<u>\$101.70</u>	
K. RETURNS OVER TOTAL COSTS (I-C)	<u>\$ -12.82</u>	<u>\$ 5.21</u>	<u>\$ 23.18</u>	
VARIABLE COSTS PER CWT ((A/D)x100)	<u>\$ 6.90</u>	<u>\$ 5.84</u>	<u>\$ 5.13</u>	
M. TOTAL COSTS PER CWT ((C/D)x100)	<u>\$ 0.30</u> <u>\$ 12.06</u>	<u>\$ 0.04</u> <u>\$ 10.52</u>	<u>\$ 9.49</u>	
(I. TOTAL COSTOT LIX OWT ((C/D)X100)	<u>ψ 12.00</u>	<u>\u0.52</u>	<u>ψ 3.43</u>	
N. NET RETURN ON INVESTMENT				
[(K+15+17+20)/ INVESTMENT] ^{5/}	4.76%	7.06%	8.76%	
[(K+10+1/+20)/ INVESTMENT]"	4./0%	1.00%	0.10%	

1/ Totals were derived using information listed in Table 8.

2/ Assumes interest rate shown in Table 8.

3/ Assumes one-half the average investment at interest rate shown in Table 8.

4/ See MF-2236 "Government Program Payments for Crop Cost Return Budgets" for additional information.

5/ Investment equals total value of all fixed assets shown in Table 8.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan 66506 SRP 862 December 2000

It is the policy of Kansas State University Agricultural Experiment Station and Cooperative Extension Service that all persons shall have equal opportunity and access to its educational programs, services, activities, and materials without regard to race, color, religion, national origin, sex, age, or disability. Kansas State University is an equal opportunity organization. These materials may be available in alternative formats. 1 M