

CONTENTS

INTRO	DUCT	ION		1
2000 W	HEAT	CROP		
	Weath	er Conditions		1
		Critical precipitation	Figure 1	1
		June rainfall	Figure 2	1
	Crop D	Development		1
		Statewide crop development	Figure 3	2
		1999-2000 Wheat crop condition	Figure 4	
		Topsoil moisture	Figure 5	2
	Insects	S		3
	Harves			
		Historical wheat production	Figure 6	4
WHEA	ΓVAR	IETIES GROWN IN KANSAS		
	Acrea	•		
		· ·	Figure 7	
			Figure 8	
		•		
	-		nter Wheat Varieties, Table 1	6
PERFO	RMAI	NCE TEST RESULTS		
	•			
		= -	Table 2	
		Entrants and Their Entries	Table 3	
		_	l Tests	
			Table 4	
		•		
	Graphi		-2000	
		Eastern Kansas tests	Figure 9	
		Central Kansas tests	Figure 10	
		Western Kansas tests	Figure 11	
		Irrigated tests	Figure 12	
	Yield	(bushels per acre)	Table 5	
		(% of test average)	Table 6	
		Multiyear Averages	Table 7	
		/eight (lb per bushel)	Table 8	
		ng (days +/- check)	Table 9	
		Height (inches)	Table 10	
		e and Lodging Notes	Table 11	
			Lengths, and Hessian Fly Ratings, Table 12	
		Nalues from 1999 Tests	Table 13	48
APPEN			ore and Darkerton D. P.	L!
		•	olicy, and Duplication Policy	
	Contrib	outors		back cover

2000 KANSAS WHEAT PERFORMANCE TEST

INTRODUCTION

This publication presents results from the 1999-2000 Kansas Winter Wheat Performance Tests and other information related to winter wheat variety performance. The information included in the report is intended to assist wheat producers in the variety selection process. The first section summarizes statewide growing conditions and harvest information for the entire 2000 Kansas wheat crop. Statewide acreage distribution of leading Kansas varieties and a summary of important agronomic and quality traits for these varieties follow. The third section presents procedures and results for the 2000 Kansas Winter Wheat Performance Tests.

2000 CROP CONDITIONS

Weather Conditions

Weather conditions varied considerably across the state during the 1999-2000 wheat season. Most of the difference occurred in the amount of precipitation that was received.

Figure 1 shows the 1999-2000 amounts versus the 1961-90 averages.

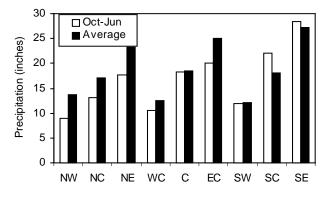


Figure 1. Critical precipitation (October – June) by crop reporting district.

The drought conditions in the northern third of the state began to improve only in June. Figure 2 shows the June rainfall by division and its departure from normal.

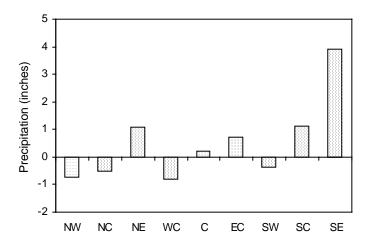


Figure 2. June rainfall departures from normal.

Several unusual conditions occurred in the 1999-2000 season. Temperatures were unseasonably warm during the winter. This resulted in wheat ripening as much as 3 weeks ahead of normal. A brief period of hot temperatures and high winds occurred during the grain fill. This was particularly common in the southwestern division. In contrast, heavy rains in the northeastern division delayed harvest. The warmer winter temperature coupled with very wet conditions contributed to some unusual disease problems, particularly in the south central division.

(From Mary Knapp, KSU State Climatologist).

Crop Development

Figure 3 compares several key stages of crop development for the current year with last year and the 5-year average. Seeding and therefore emergence got off to an early start; however, by mid-November emergence was lagging behind Below-normal rainfall that for previous years. during October and November resulted in slow and often spotty emergence, especially in the west and north central areas. Mild winter temperatures enabled the wheat to break dormancy early in the spring. The crop reached the joint stage earlier than last year and much earlier than the 5-year average. followed suit and was complete nearly a week

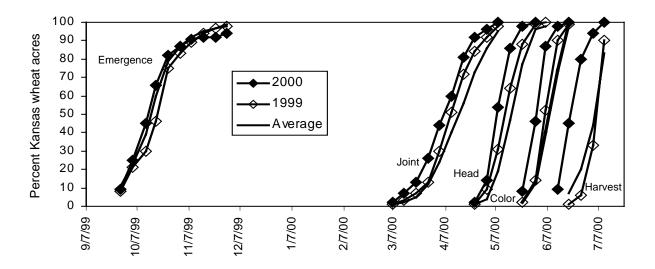


Figure 3. Statewide development of the 1999-2000 winter wheat crop.

earlier than last year and nearly 2 weeks earlier than the 5-year average. The crop matured rapidly under warm, dry conditions. Harvest was well under way by the middle of June and was finished by early July, far ahead of normal.

Nearly 80% of the 2000 crop started out in good to excellent condition (Figure 4). Low rainfall amounts in much of the state contributed to a decline in condition, so that by early December, less than 40% of the crop was classified as good

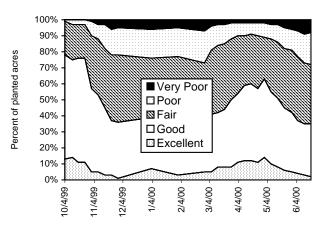


Figure 4. Condition of Kansas winter wheat crop, 1999-2000.

or excellent. A mild winter with little freeze or wind damage caused little change in condition until March and April, when rains spurred spring growth. Although the condition of the crop improved, it never recovered to the initial levels. From early May until the conclusion of harvest,

the condition of the crop continued to decline. Lack of precipitation was a major reason for the poor condition of much of the crop, but diseases and insects caused some damage as well.

Soil moisture was short or very short on a large percentage of the acres early in the planting season (Figure 5). Adequate rains over much of the state provided some relief in late September, but soil moisture returned to a short/very short status on about 80% of the wheat acres by early December. Spring rains improved the situation in March and April, but dry conditions prevailed over nearly half the wheat acres by early June.

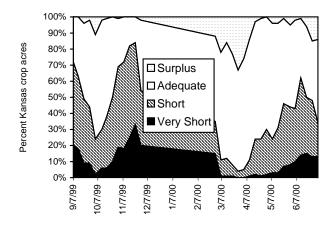


Figure 5. Statewide status of topsoil moisture, 1998-1999.

(From *Crop-Weather* reports, Kansas Agricultural Statistics, Topeka).

Diseases

The long, warm, dry fall was ideal for the spread of wheat streak mosaic virus (WSMV). By November, a few early-planted fields in western Kansas already showed stunting and yellowing from WSMV. The warm weather was also favorable for the spread of barley yellow dwarf virus (BYDV) by aphids.

Temperatures also were relatively mild during the winter months, so wheat leaves remained green throughout the winter. This raised fears that leaf rust and other foliar diseases would overwinter extensively in Kansas.

In early March, levels of spindle streak mosaic virus and soilborne mosaic virus were below average, because infections require wet soils in the fall. In late March, tan spot got off to a good start in many continuous wheat fields. Cool weather promoted the development of powdery mildew in a few fields. Speckled leaf blotch also was reported in some fields.

By early April, it was clear that BYDV was a major disease problem in eastern and central Kansas. Many fields showed extensive stunting and yellowing. In western Kansas, WSMV incidence was above average. Leaf rust overwintering was lighter than expected, so leaf rust was rare over most of the state in early April. A few overwintering hotspots were found in western Sedgwick, Kingman, Sumner, and Harper counties. In late April, stripe rust was found in the Stripe rust is favored by cool, humid weather and is rare in Kansas. The prevalence and severity were the highest seen in many years. Custer, Hondo, 2137, AP7510, and the experimental line KS89180B showed significant leaf injury in some locations, but most varieties had sufficient resistance.

In mid-May, strawbreaker foot rot caused serious lodging in many continuous wheat fields in central and southcentral Kansas. The areas around Haven and Andale seemed to be hardest hit. This unusual outbreak was blamed on mild temperatures and excess rain during January to March in that area. In late May, leaf rust became severe in parts of southcentral and central Kansas, especially on the variety Jagger. Tan spot was the second most important foliar disease. Traces of stem rust were noted at the end of the season, but disease development was cut short by hot dry weather.

(From Robert Bowden, State Extension Plant Pathologist).

Insects

Mild, dry weather is often favorable for greenbug development. This turned out to be true during the fall of 1999, when mild, dry weather was present throughout October and well into November. In early October, greenbugs were virtually absent in wheat. Numbers were still low in late October. However, some light frost had occurred by this time, and populations of some natural enemies were declining. Also, nights were getting cooler. In early November, greenbug populations began to increase. Soon they were appearing in noticeable numbers in many fields across the state. Toward the end of November, most of the acreage in the southern areas of the state was infested, often at levels of around 50 to 75/ft of row. In fact, by the end of November, it was hard to find fields that were free greenbugs. Fortunately, temperatures declined in December, and the rate of increase slowed.

Generally, greenbugs do not survive the winter in When they do, survival typically is Kansas. to the southernmost Overwintering in northern Kansas is quite rare, occurring roughly once or twice in 25 years. However, last year, infestations survived across Kansas in the dry areas, primarily in the western third of the state. Even parasites that are cold sensitive were active throughout the winter. Around Hoxie and Colby, numbers of 25 to 50 greenbugs/ft. of row were common in early March, with higher populations in southwest Numbers rose as temperatures Kansas. increased in March and April. Insecticides were applied on much of the acreage west of the line from Oakley to Garden City. Some growers who waited too long in making treatment decisions suffered serious losses.

Low, scattered populations of bird cherry-oat aphids were observed in various parts of the state during the fall and early winter.

Russian wheat aphid began to appear during March and early April. It occasionally caused damage in the western portion of the state, but in many cases, it appeared to be more of a secondary problem to the greenbug. In the past, it usually has been the other way around.

Scattered signs of infestation were observed during March as far east as Wilson in Ellsworth County for the first time in a few years.

The dry weather during the fall and spring was probably mostly unfavorable for Hessian fly development. Some fall infestations in parts of southwest Kansas were reported, and some spring damage was noted in Barton County; however, the overall incidence of Hessian fly infestation was not well documented.

After 2 years of significant army cutworm damage, there were fewer reports of infestations this year. Mite infestations were minimal, and armyworm infestations failed to develop. (From Leroy Brooks, State Extension Entomologist).

Harvest Statistics

The Kansas Agricultural Statistics' June 9 estimate of the 2000 crop was 386.4 million bushels harvested from 9.2 million acres (Figure 6). This estimate was down 5% from the May 1 forecast and down 11% from last year's production. The statewide yield average of 42 bushels per acre was down 2 bushels from the May 1 prediction and down 5 bushels from last year's average. (From June 9, 2000 *CROPS* report, Kansas Agricultural Statistics, Topeka).

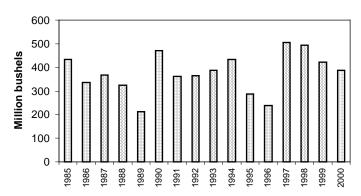


Figure 6. Historical Kansas winter wheat production.

WHEAT VARIETIES GROWN IN KANSAS

Acreage Distribution

The leading wheat varieties planted in Kansas are reported in Figures 7 and 8 and in Table 1. The top five varieties occupied 71.0% of the state's seeded acreage in 2000.

The top 10 varieties for each crop-reporting district are presented in Figure 7. In the western districts, Jagger and 2137 acreages increased. Acreages of TAM 107 and Ike continued to decline, but both varieties maintained a sizable presence. Jagger replaced TAM 107 as the leading variety in the western districts. TAM 110 acreage increased most significantly in the west

Jagger 2137 TAM 107 Vista Blends	23(21) Niobrara 18(11) Ike 14(21) Arapahoe 9(11) Akron 5(3) Alliance	4(-) 3(8) 3(5) 3(1) 3(-)	2137 Jagger Blends Karl/Karl 92 Dominator	27(23) 19(20) 18(12) 13(16) 7(3)	2163 Tomahawk Champ Ogallala Ike	3(4) 2(3) 1(3) 1(1) 1(2)	Karl/K92 28(30) Hondo 2(-) Jagger 12(12) T-hawk 1(0) 2163 7(5) Akron 0(-)	
Jagger 2137 TAM 107 Ike TAM 110	22(15) Blends 22(13) Larned 21(34) Akron 10(12) Ogallala 6(2) Karl/Karl 92	4(3) 3(4) 3(4) 1(2) 1(2)	2137 Jagger Blends Karl/Karl 92 2163	36(32) 30(24) 9(7) 5(9) 4(5)	Dominator TAM 107 Ike Coronado 7853	3(2 2(3 2(4 1(1 1(2	8) Karl/Karl 92 22(27) 2174 3(I) Jagger 17(17) 7853 1(I) 2163 6(10) Big Dawg 1(3(2) 3(-) (2) (0) (-)
Jagger TAM 107 2137 Ike TAM 110	24(15) Larned 17(24) Akron 16(8) Blends 16(20) 7853 4(3) Ogallala	3(6) 3(3) 3(3) 2(4) 2(1)	Jagger 2137 Blends 2163 7853	20(24) 8(7) 3(4)	Karl/Karl 92 2174 Coronado Pecos Ike	2(4) 2(-) 2(2) 1(2) 1(1)	Jagger 37(45) Akron 2(-) 2137 34(22) 2174 2(-) Karl/Karl 92 7(13) 7853 1(2) 2163 3(4) Tomahawk 1(1) Big Dawg 2(0) Coronado 1(2)) !))

Figure 7. Leading wheat varieties in Kansas in 2000, presented as percent of seeded acreage by crop reporting district for 2000 and 1999 (1999 in parentheses). From Wheat Variety report, Kansas Agricultural Statistics, February 9, 2000.

central district. Niobrara and Alliance, both developed in Nebraska, appeared in the top 10 for the first time in the northwest district.

Jagger and 2137 were the most popular varieties in the central districts. 2137 was the most popular variety in the north central and central districts, whereas Jagger occupied nearly half the acreage in the south central district. The acreage of Dominator continued to grow in the north. Varietal blends increased in popularity in all three central districts. Karl/Karl 92, 2163, Ike, and 7853 acreages continued to drop.

2137, Jagger, and Karl/Karl 92 were the most prevalent varieties in eastern Kansas once again. Jagger had the edge in the southeast, but 2137 and Karl/Karl 92 were the top two varieties in the northeast and east central districts. Akron, Arapahoe, Hondo, and 2174 appeared in the top 10 for the first time in the eastern districts.

Figure 8 illustrates the historical statewide distribution of the top 10 varieties in 2000. These varieties occupied 78.7% of the planted wheat acres in 2000. Jagger and 2137 together accounted for 57.1% of the 2000 acres. Karl 92, 2163, and TAM 107, the predominant varieties for most of the 1990s, accounted for 12.1% of the acreage in 2000. The remaining 5 varieties in the top 10 accounted for 9.5% of 2000 wheat acres. Ike and 7853 have been popular in the mid to late

1990s, but have declined in recent years. Larned was very popular in the 1980s but has slowly lost acreage for the past several years. Dominator and TAM 110 are relatively new varieties with increasing acreages. (From February 9, 2000, Wheat Variety report, Kansas Agricultural Statistics, Topeka).

Agronomic Characteristics

Comparative ratings for important agronomic traits, pest resistance, and milling and baking quality are listed in Table 1. Varieties are included in this table if they appear in the annual Wheat Variety survey report from Kansas Agricultural Statistics. Ratings for a given trait in this table are experts' best estimates of the relative performance of the varieties based on information and observations over several seasons and from numerous sources. ratings are updated annually to account for changes in performance that occur over time and to adjust for the changes in ranking that arise with the continued additions of new varieties.

New Variety Descriptions

Brief descriptions of new public entries in the performance tests are included below. These descriptions are abstracted from release notices or other material provided by releasing agencies.

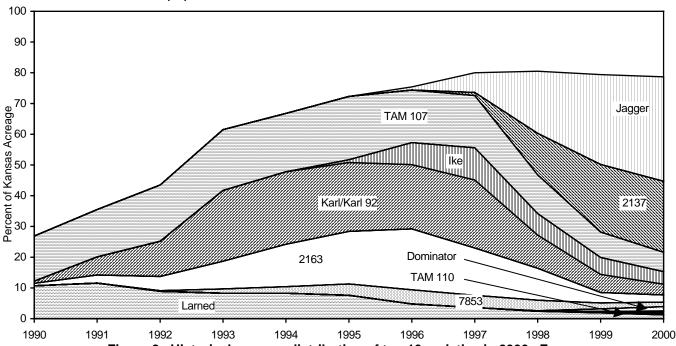


Figure 8. Historical acreage distribution of top 10 varieties in 2000. From Kansas Agricultural Statistics, Topeka.

Table 1. Comparisons of leading winter wheat varieties grown in Kansas.¹

	Percent				. 3				_					. 4		Relative
	Kansas			Rela	tive ³					sista	nce o	r tolera				milling
	seeded					Al	Winter		Spck.			-		Wheat	Soil-	and
	acreage	Matur-	Test	Straw	Shat-	Toler-	hardi-	Tan	leaf	Leaf	Stem	yellow	sian	streak	borne	baking
Variety	2000 ²	ity	wt.	str.	tering	ance	ness	spot	blotch	rust	rust	dwarf	fly	mos.	mos.	quality⁵
Jagger	34.0	1	4	4	5	3	6	3	3	8	3	6	9	4	1	EX*
2137	23.1	3	4	1	5	2	3	4	4	7	7	6	2	4	1	AC
TAM 107	6.3	1	4	2	2	9	2	6	6	9	3	8	9	5	8	LD
lke	4.1	4	3	4	2	8	3	7	8	9	3	6	1	9	1	AC
Karl/Karl 92	3.5	1	3	4	3	9	3	3	5	9	6	8	9	9	1	EX*
2163	2.3	3	6	1	6	2	4	4	4	7	4	6	1	4	1	LD
7853	1.5	3	4	4	3	8	5	6	9	8	4	6	9	5	1	EX
Dominator	1.4	4	4	3	7	8	3	4	4	8	3	6	3	7	1	AC
TAM 110	1.3	1	3	2	2	8		7	6	9	3	8	9	5	9	AC
Larned	1.2	4	4	5	3	8	3	9	8	8	3	9	3	9	8	AC
2174	1.1	3	3	1	3	5	4	5	4	6	8	4	5	7	1	AC
Akron	1.0	5	3	5	3		3	5	9	8	3		8	9	9	AC
Coronado	1.0	2	3	1	4	3	5	6	6	7	3	6	3	6	1	AC
Vista	0.9	5	4	6	3	7	2	8	5	7	5		1	9	8	AC*
Ogallala	0.8	3	2	2	6	5	4	6	5	5	3	7	9	5	9	EX
Tomahawk	0.8	3	4	3	3	8	2	4	8	4	3	8	9	8	1	AC
Pecos	0.7	1	4	1	4	5	5	6	5	7	4	7	1	6	1	AC
Big Dawg	0.5	6	4	1	3	5	5	4	2	7	5	6	9	4	1	AC
Niobrara	0.5	3	4	5	3		3	8	7	7	3		9	7	8	AC
Arapahoe	0.4	6	4	5		6	3	8	4	5	2		3	7	8	AC
TAM 105	0.4	1	4	2	2	9	2	9	6	8	8	8	8	6	8	AC
Alliance	0.3	4	4	4	3		3	7	7	8	2		5	9	9	AC
Scout(s)	0.3	4	4	6	3		3	9	7	8	3	9	9	7	9	AC
Champ	0.2	4	5	5		7	3	6	6	6	6	7	9	5	1	
Eagle	0.2	4	4	5	2		3	9	7	8	4	9	7	7	9	EX*
Hondo	0.2	5	3	1	4	3	3	6	3	3	4	6	6	4	1	
Longhorn	0.2	5	3	1	5			6	7	5	1	6	8	5	9	LD
T81	0.2	2						6	7	7	3	7	7	6	8	
Blends	7.5	_						-	•	•	-	•	•	-	-	
Hard Whites																
Other Hard	3.9															
Other Soft	0.0															

Varieties listed in the Feb. 9, 2000, Wheat Variety survey, KS Ag. Statistics. Ratings are experts' best estimates, based on information and observations from several sources. Rated on a scale of 1 to 9; except for maturity (where 1 is earliest), 1 best and 9 poorest; -- = not tested.

From February 9, 2000 Wheat Variety survey, Kansas Ag. Statistics Office, Topeka, KS.

³ Agronomic information and some disease ratings provided by Joe Martin, Hays, and Allen Fritz, Jim Shroyer, Ray Lamond, KSU Agronomy.

⁴ Disease ratings provided by R.L. Bowden and W.W. Bockus, KSU Plant Path.; Hessian fly ratings by J.H. Hatchett, KSU Entomology.

⁵ Ratings compiled by P.J. McCluskey are based on data from the KSU Department of Grain Science and Industry, the U.S. Grain Marketing and Production Research Center, and inputs from the milling and baking industries. See annual update of "Milling & Bread-baking Qualities of Hard Winter Wheat Varieties" for more information.

EX = Exceptional Quality; usually large kernels; high protein content; very good milling, mixing, and commercial bread-baking performances.

AC = Acceptable Quality; milling and baking attributes acceptable but not outstanding for all properties, may have minor defects.

LD = Less Desirable Quality; one or more serious quality defects.

^{-- =} Inadequate information or conflicting data.

^{*}Strong blending wheat; needed for blending with weaker wheats, may not be suitable alone for bread flour.

Kaskaskia soft red winter wheat was released by the Illinois Agricultural Experiment Station in 1998. Kaskaskia heads several days earlier than Cardinal and is about the same height or slightly taller. It is bearded and has tan chaff at maturity. Kaskaskia is moderately resistant to soil borne wheat mosaic virus and wheat spindle streak mosaic virus and resistant to some races of leaf rust. It is susceptible to stem rust and powdery mildew. (University of Illinois Agricultural Experiment Station variety description).

Millennium hard red winter wheat was released jointly in 1999 by the Nebraska Agricultural Experiment Station, the USDA-ARS, and the South Dakota Agricultural Experiment Station. Millennium appears to be broadly adapted to the dryland wheat production systems of the High Plains. Its appearance is similar to Arapahoe with a moderately open, upright canopy and an erect, twisted, flag leaf. Millennium is moderately resistant to stem rust, leaf rust, and Hessian fly but is susceptible to wheat soilborne mosaic virus and barley yellow dwarf virus. Initial evaluations indicate bread-baking quality similar to that of (Release notice from Nebraska Arapahoe. Agricultural Experiment Station).

Nuplains hard white winter wheat was released by the USDA-ARS and the Nebraska Agricultural Experiment Station in cooperation with the Agricultural Experiment Stations of South Dakota and Wyoming in 1999. Nuplains is an awned, white-glumed, semidwarf cultivar with straw strength superior to that of Arapahoe. It has averaged 1.2 inches shorter than 2137 and 4 inches shorter than Arapahoe. It has a short coleoptile, similar to that of Jagger and TAM 107. Winterhardiness of Nuplains has been less than that of Alliance and Arapahoe but superior to that of Jagger. Nuplains is a medium-maturing cultivar under Nebraska conditions, with heading dates averaging 2 to 3 days earlier than those of Arapahoe. Nuplains has exhibited adult-plant and seedling resistance to stem rust. moderately susceptible to current races of leaf rust and is susceptible to soilborne mosaic virus, wheat streak mosaic virus, the Great Plains biotype of Hessian fly, and the Russian wheat aphid. Nuplains possesses an intermediate level of resistance to weather-induced preharvest sprouting, comparable to that of Rio Blanco and Trego. Based on current information, Nuplains appears to be best suited for dryland production

areas in north central and northwest Kansas. It also has shown promise for use in irrigated production systems.

Nuplains was found to have acceptable end-use quality for commercial bread applications. In evaluations for Taiwanese raw and Hokkien-style noodles, it received acceptable ratings for dough handling, machining properties, and noodle texture. Noodle color ratings varied, but generally were considered as less than desirable due to discoloration after 24 hrs of storage.

Prairie Red hard red winter wheat was developed bγ the Colorado Agricultural Experiment Station and released to seed producers in September 1998. It was released because of its resistance to the Russian wheat aphid and high grain yield under the severe stresses of eastern Colorado. Prairie Red is an awned, brown-chaffed, semidwarf, hard red winter wheat similar to TAM 107 in all respects except that it is resistant to the RWA. Prairie Red is moderately susceptible to the prevalent races of leaf rust and resistant to prevalent races of Based on field observations for stem rust. incidence of wheat streak mosaic virus. Prairie Red is moderately resistant. In Colorado and regional milling and baking tests, Prairie Red has been similar in overall quality to TAM 107, a lower, but acceptable quality wheat.

Prowers 99 hard red winter wheat was developed by the Colorado Agricultural Experiment Station and released to seed producers in September 1999. Prowers 99 was derived from a modified bulk procedure following single plant selection (during 1997 and 1998) within the cultivar Prowers for improved resistance to the Russian wheat aphid. Prowers 99 has about 13% symptomatic plants compared to 53% in Prowers.

Prowers 99 is an awned, white-chaffed, medium tall, medium late, hard red winter wheat similar to and indistinguishable from Lamar in all respects except that it is resistant to the Russian wheat aphid. Prowers 99 is moderately susceptible to the prevalent races of leaf rust and resistant to prevalent races of stem rust. Based on field observations for incidence of wheat streak mosaic virus, Prowers 99 is susceptible.

Based on composite samples from several Colorado locations, its wheat and flour protein contents are similar to those of Lamar. It has

strong mixing characteristics as determined by the mixograph. In Colorado milling and baking tests, Prowers 99 has been similar in overall quality to Lamar, a high quality standard.

TAM 302 hard red winter wheat was released by the Texas Agricultural Experiment Station in 1998. It is an awned, semidwarf variety with white chaff. TAM 302 is medium to late in maturity in Texas, similar to 2137 and Ogallala, but maturity may be medium to early in Kansas. It is resistant to soilborne mosaic virus, has adult-plant resistance to leaf rust, and may tolerate barley yellow dwarf virus better than other varieties. TAM 302 tolerates acid soils fairly well.

Trego hard white wheat was released by the Kansas Agricultural Experiment Station in 1999. Trego is an awned, white-chaffed, hard white wheat variety. It is medium late in maturity (equal to 2137) and has only moderate straw strength (equal to Jagger's but weaker than that of 2137). Trego's coleoptile length is average for a semidwarf variety, and winter hardiness is good. Trego is nonshattering and has a moderate level of sprouting tolerance. It has effective levels of resistance to leaf rust, stem rust, soilborne mosaic virus, and wheat streak mosaic virus. The Hessian fly reaction of Trego is mixed; approximately half the plants are resistant. Trego is susceptible to the wheat curl mite and the Russian wheat aphid.

The primary area of adaptation for Trego is dryland production in western Kansas. It also has performed well in eastern Colorado and southwest Nebraska. In some years, Trego has done well in central Kansas tests, but its yields have been erratic.

Trego has produced hard white grain with excellent test weights and flour extraction rates. Its protein level has been equal to that of 2137. Trego's bread baking quality has been rated as above average. The overall Asian noodle qualities of Trego have not been good.

PERFORMANCE TEST RESULTS

Objectives

To help Kansas growers select wheat varieties suited for their area and conditions, the Kansas Agricultural Experiment Station annually compares both new and currently grown varieties and hybrids in the state's major crop-producing areas. The objective is to provide Kansas growers with unbiased performance information on all varieties and hybrids likely to become available in the state.

Varieties Included in Tests

Parentage and origin of public varieties included in the 2000 performance tests are listed below.

Table 2. Parentage of public wheat varieties.

	<u> </u>		
	_		ease
Variety	Parentage	stat	e yr.
HARD RE	<u>D</u> :		
Akron	TAM 107/Hail	CO	1994
Alliance	Arkan/Colt//Chisholm	NE	1994
Arapahoe	Brule/3/Pkr*4/Agent/Beloterkovskaia 19		
		NE	1988
Culver	Trapper//CMN/OT/3/CIMMYT /Scout/4/		
•	sib/Homestead/5/Arapahoe	NE	1998
Custer	F29-76/TAM 105//Chisholm	OK	1994
lke	Dular/Eagle//2*Larned/Cheney/3/Colt	KS	1993
Jagger	KS82W418/Stephans	KS	1994
Karl 92	F ₁₁ head row selection from 'Karl'	KS	1992
Millennium		NIE	1000
Newton	/Agent//Kavkaz Pitic62/Chris sib//2*Sonora64/Klein Rei	NE	1999
INEWION	/4/Scout	KS	ות 1977
Niobrara	TAM 105*4/Amigo//Brule	NE	1994
Prairie Red	_	CO	1998
Prowers 99		CO	1999
Scout 66	Composite of 85 Scout selections	NE	1967
TAM 107	TAM 105*4/Amigo	TX	1984
TAM 301	Mit/Kaykaz	TX	1995
TAM 302	Probrand 812/Caldwell//TX86D1310	TX	1998
Vista	NE68513/NE68457//Centurk/3/Brule	NE	1992
Wesley	PlainsmanV/Odesskaya51//Colt/Cody	NE	1998
Windstar	TX79A2729//Caldwell/Brule field sel #6		
	/3/Siouxland	NE	1997
Yuma	NS14/NS25//2*Vona	CO	1991
Yumar	Yuma/PI 372129, F1//CO850034/3/4*Y	'uma	
		CO	1997
2137	W2440/W9488//2163	KS	1995
2163	Pioneer line W558/5/Etoile de Choisy//	Thor	ne/
	Clarkan/3/Cl15342/4/Purdue 4946A4	I-18-	2
	(Pioneer)	KS	1989
2174	IL 71-5662/PL 145//2165	OK	1997
HARD WH			
Betty	Jagger 'Sib' selection	KS	1998
Heyne	Plainsman V/KS75216//SWM754308/3		
	Plainsman V/Lindon//KS82W422	KS	1998
Nuplains	Abilene///PlainsmanV//Newton/Arthur7		1999
Trego	RL6005/RL6008//2*Larned/3/Cheney/L		
00ET 555	Bennet sib/5/TAM 107/6/Rio Blanco	KS	1999
SOFT REI		INI	4004
Caldwell	Benhur sib *2/Siette Cerros	IN	1981
Kaskaskia	IL77-2933/IL77-3956//Pike/Caldwell	IL	1998

Public varieties are selected for inclusion in the tests based on several criteria. Most represent new or established varieties with potential for successful use in Kansas. Some are included as long-term checks for use in environment or maturity comparisons. Others are entered at the request of the originating institution.

Privately developed varieties are entered into the Kansas Wheat Performance Tests by their originators or marketers. Entry is voluntary. Entrants choose both the entries and test sites and pay a fee for each entry-location to help defray test expenses. The program is similar to those for corn, sorghum, soybeans, and alfalfa.

The 2000 private entrants and entries are listed in Table 3. Ten entrants provided a total of 31 varieties and hybrids for testing at locations of their choice. Public and private entries were grown together at random in the same tests. Growers interested in more detailed descriptions of private entries should contact the entrants directly (see addresses and telephone numbers in Table 3 or consult the Kansas Crop Improvement Certified Seed Directory).

Table 12 describes the characteristics of seed submitted for testing. Seed quality, including such factors as size, purity, and germination, can be important in determining the performance of a variety. Wheat seed used for entries in the Kansas Crop Performance Tests is prepared professionally and usually meets or exceeds Kansas Crop Improvement Certification standards. Performance of a given variety or hybrid comparable to that obtained in these tests is best assured under similar environmental and cultural conditions and with the use of certified or professionally prepared seed.

Environmental Factors Affecting Individual Tests

Locations of test sites are shown on the map on the front cover. The Stevens County irrigated test had to be eliminated in 2000. Data from the Greeley County test near Tribune were not used because of high variability caused by dry spring weather, uneven greenbug infestations, and barley vellow dwarf. **Descriptions** environmental conditions are included below. Environmental factors should be considered when examining the results for a particular Site descriptions and management practices for each site are summarized in Table 4.

Performance test summary: The tests were subjected to conditions similar to those described under the statewide growing conditions. Location codes in parentheses after each location name are used as column headers in the data tables.

Table 3. Private entrants and entries in the 2000 Kansas Wheat Performance Tests.

AgriPro	Drussel	NK	Quantum
AgriPro Biosciences Inc	Drussel Seed and Supply	Novartis Seeds	Hybritech US
12115 Jully Hill Rd	2197 W Parallel Road	PO Box 340	PO Box 1320
Junction City, KS 66441	Garden City, KS 67846	Hartsville, SC 29551	806 N 2nd St
785-776-6603	316-275-2359	843-332-8151	Berthoud, CO 80513
Hondo	T81	(S) BL930390	970-532-8016
Thunderbolt		(S) Coker 9474	7406
	General Mills	(S) Coker 9663	7588
AGSECO	General Mills Operations Inc		AP 7510
DeLange Seed (AGSECO)	PO Box 5022	Polansky	XH1711
PO Box 7	Great Falls, MT 59403	Polansky Seed	XH3207
Girard, KS 66743	406-761-6252	PO Box 306	XH7463
316-724-6223	(W) GM10001	2729 M St	XH9801
7853	(W) GM10002	Belleville, KS 66935	XH9806
Mankato	(W) GM10003	785-527-2271	XH9815
Onaga	(W) NuWest	Dominator	
TAM 110			Terra
	Goertzen		Terra Seed
AWWPA	Goertzen Seed Research		37540 Crescent Hill Rd
Am White Wheat Prod Assn	14604 S Haven Rd		Osawatomie, KS 66064
PO Box 326	Haven, KS 67543		913-755-4818
Atchinson, KS 66002	316-465-2675		HR 217
785-367-4422	Enhancer		
(W) Arlin	G15048 Exp		
(W) Oro Blanco	Kalvesta		
	Venango		

Table 4. Wheat Performance Test site descriptions and management in 2000.

REGION COUNTY and	Site, location code,	Dates of planting.	Soil type and		erlize s/ac		 Seeding rate ¹ 		
Cooperator	and nearest town		previous crop	N	Р	K		nd row spacing	
EAST									
BROWN Larry Maddux	Cornbelt Experiment Field (BR) Powhattan	10/15/99 6/23/00	Grundy silty clay loam Soybean, 1999	75 	 20		Fall Spring	90 lb/a 7.5 in. row spacing	
RILEY Allan Fritz	Ashland Agronomy Farm (RL) Manhattan	10/15/99 6/23/00	Reading silt loam Oats, 1998	75 50	25 		Fall Spring	75 lb/a 9 in. row spacing	
FRANKLIN Keith Janssen	EC KS Experiment Field (FR) Ottawa	10/18/99 6/25/00	Woodson silt loam Soybean, 1999	 80	 26	 13	Fall Spring	1200000 seeds/a 7 in. row spacing	
LABETTE Jim Long	SE Agric Res Ctr (LB) Parsons	10/7/99 6/13/00	Parsons silt loam Wheat, 1999	70 	50 	50 	Fall Spring	75 lb/a 7 in. row spacing	
NORTH CENTRAL									
REPUBLIC Barney Gordon	NC KS Experiment Field (RP) Belleville	10/1/99 6/23/00	Crete silt loam Grain sorghum, 1998	 80	 30		Fall Spring	60 lb/a 7.5 in. row spacing	
SMITH Barney Gordon	Farmer's Field (SM) Smith Center	9/30/99 6/21/00	Silty loam Corn, 1998	80	 50		Fall Spring	60 lb/a 7.5 in. row spacing	
SOUTH CENTRAL									
HARVEY Mark Claassen	Harvey Co Expt Field (HV) Hesston	10/15/99 6/14/00	Ladysmith silty clay loam Soybean, 1999	90 	32 		Fall Spring	60 lb/a 8 in. row spacing	
RENO Bill Heer	SC KS Experiment Field (RN) Hutchinson	10/18/99 6/24/00	Ost silt loam Soybean, 1999	75 50	40 		Fall Spring	60 lb/a 8 in. row spacing	
STAFFORD Vic Martin	Sandyland Expt Field (SD) St. John	9/30/99 6/22/00	Pratt loamy fine sand Sorghum, 1998	68 50	46 		Fall Spring	60 lb/a 7 in. row spacing	
SUMNER Allan Fritz	Max Kolarik Farm (SU) Caldwell	10/6/99 6/12/00	Sandy loam Wheat, 1999	70 	25 		Fall Spring	60 lb/a 9 in. row spacing	
WEST									
ELLIS T. Joe Martin	Agric Res Ctr - Hays (EL) Hays	9/22/99 6/15/00	Harney clay loam Wheat, 1998	 75			Fall Spring	60 lb/a 12 in. row spacing	
THOMAS Pat Evans	NW Res-Ext Cter (TD) Colby	9/21/99 6/21/00	Keith silt loam Wheat, 1998	 65			Fall Spring	60 lb/a 12 in. row spacing	
GREELEY Alan Schlegel	SW Res-Ext Ctr (GD) Tribune	9/17/99 6/21/00	Richfield silt loam Sunflower, 1998	 80			Fall Spring	55 lb/a 10 in. row spacing	
FINNEY Merle Witt	SW Res-Ext Ctr (FD) Garden City	9/23/99 6/19/00	Keith silt laom Wheat, 1998	 50			Fall Spring	45 lb/a 10 in. row spacing	
IRRIGATED									
STAFFORD Vic Martin	Sandyland Expt Field (SI) St. John	10/1/99 6/23/00	Pratt loamy fine sand Corn, 1998	68 50	46 		Fall Spring	90 lb/a 7 in. row spacing	
THOMAS Pat Evans	NW Res-Ext Ctr (TI) Colby	9/15/99 6/26/00	Keith silt loam Canola, 1999	110 	35 		Fall Spring	90 lb/a 12 in. row spacing	
FINNEY Merle Witt	SW Res-Ext Ctr (FI) Garden City	9/24/99 6/20/00	Keith silt loam Corn, 1998	 90			Fall Spring	90 lb/a 10 in. row spacing	

¹ Seed weight of 2000 entries ranged from 23 to 53 grams/1000 kernels, averaging 36 grams/1000 kernels (see Table 14).

EAST

Brown County (BR), Cornbelt Experiment Field, Powhattan: Below-normal rainfall was the dominant influence on variety performance in this test. Precipitation was 10.25 inches below normal from September through May. The flag leaves of most varieties senesced soon after heading.

Riley County (RL), Ashland Research Farm, Manhattan: Uneven distribution of soilborne mosaic virus caused much of the variability in this test. Leaf diseases were relatively light this year. Hot, dry winds during grain fill likely lowered test weights and speeded maturation.

Franklin County (FR), East Central Experiment Field, Ottawa: Excellent seedbed conditions resulted in excellent stands and good fall growth. Below-average precipitation until mid-June likely limited the performance of early-maturing varieties. Observed diseases included barley yellow dwarf and leaf rust.

Labette County (LB), Southeast Agricultural Research Center, Parsons: Fall conditions favored excellent emergence and early growth. Dry, mild, winter weather enabled aphids to survive nearly all year. Severe barley yellow dwarf may have limited yields of some varieties. Spring weather was dry and cool early but became wetter as harvest approached, resulting in high grain moisture at harvest. Armyworms defoliated some varieties late in the season. Strawbreaker and leaf rust also appeared late in the season.

NORTH CENTRAL

Republic County (RP), North Central Experiment Field, Belleville: Dry fall conditions may have limited fall growth but did not inhibit stand establishment. mild conditions Dry, continued throughout the winter months. Adequate rainfall in late February and March facilitated good spring growth; however, belownormal precipitation from then on likely limited performance. Some barley yellow dwarf was noted.

Smith County (SM), Farmer's field, Smith Center: Timely fall rains resulted in good stands and fall tillering. Aside from good rains in March, below-normal precipitation probably limited performance and foliar disease development.

SOUTH CENTRAL

(HV), Harvey Harvev County County Experiment Field, Hesston: Dry conditions after planting caused uneven emergence and final However, fall growth was favored by stands. above-normal temperatures late fall. in Precipitation totals for December, February, and March were well above normal. Mean temperatures also were above average for January and February and near normal in March. Both mean temperatures and precipitation were below average for the April-June period. Light to moderate barley yellow dwarf was the only disease of consequence. Minor soilborne mosaic virus symptoms occurred briefly in early April after temperatures dropped to freezing. Leaf rust incidence was both light and late in occurrence. Dry weather hastened maturity of the crop and also allowed for timely harvest and high grain test weights.

Reno County (RN), South Central Experiment Field, Hutchinson: Planting conditions were favorable, resulting in uniform emergence and stand establishment. Mild winter temperatures combined with more moisture than most of the other test locations resulted in higher levels of leaf diseases such as tan spot, leaf rust, stripe rust, and powdery mildew. Low test weights resulted from several factors: a 100° plus day in the middle of May; high levels of disease; and the humid, relatively cool weather at harvest time.

Stafford County, dryland (SD), Sandyland Experiment Field, St. John: Good stands and fall growth combined with a mild winter allowed the test to enter spring in good condition. Heavy March rains likely contributed to increased yield variability by leaching nitrogen and causing ponding in the root zone.

Sumner County (SU), Max Kolarik farm, Caldwell: Leaf diseases, particularly leaf rust and stripe rust, caused significant loss of leaf area. Hot, dry winds during late May and early June further limited grain filling.

WEST

Ellis County (EL), KSU Agricultural Research Center, Hays: Adequate soil moisture allowed the establishment of good stands and early fall growth. However, inadequate moisture began to limit growth later in the fall. Dry conditions continued all winter with no significant

precipitation from October through March. Mild winter temperatures allowed the wheat to overwinter with little or no freeze-back of foliage. Good rains in April and early May combined with above-normal temperatures caused the crop to develop about 10 days ahead of normal. A March application of Lorsban controlled a minor infestation of Russian wheat aphids. Barley yellow dwarf virus occurred in small spots throughout the test, increasing variation in yields. Leaf rust built up late in the season and caused some damage to susceptible varieties.

Thomas County, dryland (TD), Northwest Research-Extension Center, Colby: Favorable planting conditions allowed good stand establishment. Warm, dry conditions during the winter months continued into spring. The first half of June was particularly hot, dry, and windy. An insecticide application controlled Russian wheat aphids and greenbugs. Disease observations included wheat streak mosaic and barley yellow dwarf virus.

Greeley County, dryland (GD), Southwest Research-Extension Center, Tribune: Abandoned because of variability caused by dry spring weather, uneven greenbug infestations, and barley yellow dwarf.

Finney County, dryland (FD), Southwest Research-Extension Center, Garden City: Warm, dry conditions prevailed during most of the wheat growing season. Greenbugs and bird cherry oat aphids survived in low numbers all winter. March rains enabled the test to survive and produce acceptable yields, even though hot, dry weather in the spring and summer; barley yellow dwarf virus; and wheat streak mosaic virus all caused loss of leaf area and contributed to general plant stress.

IRRIGATED

Stafford County, irrigated (SI), Sandyland Experiment Field, St. John: See notes for dryland test at this location. Soilborne mosaic virus also added to test variability.

Thomas County, irrigated (TI), Northwest Research-Extension Center, Colby: Favorable planting conditions allowed good stand establishment. Warm, dry conditions during the winter months continued into spring. The first half of June was particularly hot, dry, and windy. No Russian wheat aphids were observed in this test.

Disease observations included wheat streak mosaic and barley yellow dwarf virus.

Finney County, irrigated (FI) Southwest Research-Extension Center, Garden City: Good fall emergence and resulting stands allowed the test to enter the winter months in good condition. Aphids survived all winter and spring. Above-normal May temperatures and below-normal May and June rainfall contributed to premature leaf loss. Barley yellow dwarf virus was observed.

Test Results and Variety Characterization

Results from Kansas tests are presented in Tables 5 through 13. The information in these tables is derived from replicated varietal comparisons at several sites representing various wheat-producing areas of the state.

Characteristics of specific 2000 entries can best be determined by examining Table 1 and data in Tables 5 through 13 for the relative performance of new varieties or hybrids of interest compared to those the grower is currently planting. Yields are reported in Table 5a-d as bushels per acre (60 pounds per bushel) adjusted to a moisture content of 13%, where moistures were reported at harvest. In Table 6a-d, bushel yields are converted to yields as percentages of the test averages to speed recognition of highest yielding entries (more than 100%, the test average). The excellent performances of several of the entries are highlighted in these tables.

Growers should examine Table 7a-d to check the performance of entries over several years at locations closest to their farms. These tables present yields averaged over 2, 3, and 4 years. One-year or one-location results can be misleading because of the possibility of unusual weather conditions.

Measurements of characteristics often contributing to yield performance are shown in Table 8a-d (test weights); Table 9a-d (relative heading dates); Table 10a-d (heights); Table 11 (disease and lodging notes); and Table 12 (planted seed characteristics, coleoptile lengths, and Hessian fly ratings). No significant shattering occurred in the tests in 2000.

At the bottom of each table is the LSD (least significant difference) for each column of replicated data. The use of the LSD is intended to reduce the chance of overemphasizing small

differences in yield or other characteristics. Small variations in soil structure, fertility, water-holding characteristics, and other test-site characteristics can cause considerable yield variation among plots of the same variety grown only a short distance apart.

Another statistical parameter is the coefficient of variation (CV) shown at the bottom of most columns. This figure, if properly interpreted, can be used to estimate the degree of confidence one may have in the data presented. In this testing program, CV's below 10% generally indicate reliable, uniform data, whereas CV's from 11% to 15% usually indicate less desirable but generally useful data for the rough performance comparisons desired from these tests.

Coleoptile Measurements

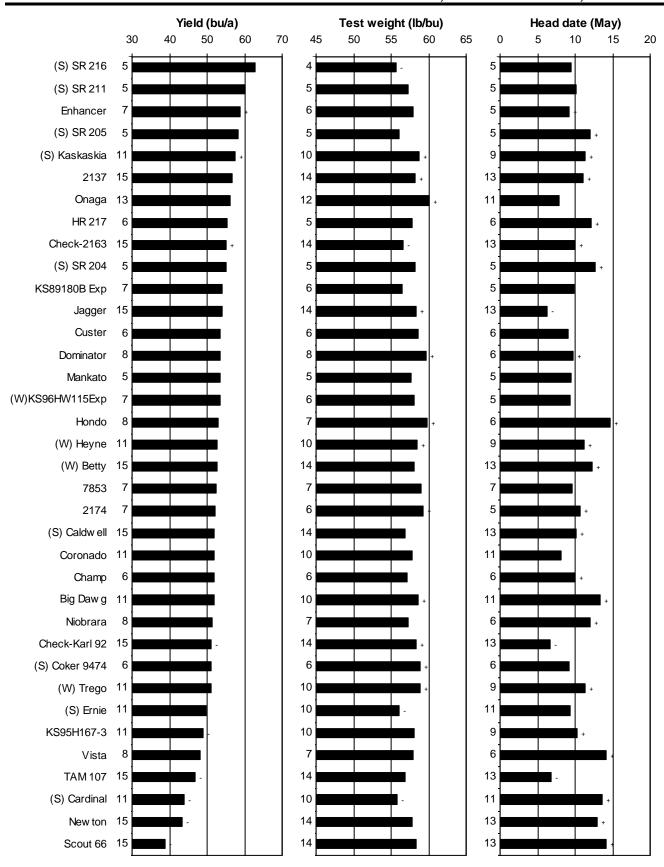
Coleoptile length is a primary factor in determining the relative ability of a variety to emerge from deep planting. We have no evidence that coleoptile length plays a significant role in a variety's ability to emerge through a crust or compacted soil. However, long coleoptiles elongate faster than short coleoptiles, thereby sometimes escaping crusting problems as the result of quicker emergence.

Coleoptile length measurements will predict the relative ability of a cultivar to emerge from deep plantings through noncrusted soil. The actual planting depth for a variety is not limited to its coleoptile length. Once the coleoptile has reached its maximum length, the primary leaf breaks through the coleoptile and has the ability to move through an additional 2 to 3 inches of noncompacted Recent dry, soil. demonstrated that if a coleoptile elongated to 3.75 inches, the plant still had an 80% chance of emerging from а 6-inch planting depth. Emergence decreased to 40% for 2.5-inch coleoptiles and 20% for 2.0-inch coleoptiles.

Maximum coleoptile elongation of a variety is influenced heavily by soil temperature. As soil temperature increases from 65° F to 85° F, the coleoptile lengths of all varieties are reduced about 30%. As soil temperature decreases from 65° F, coleoptile lengths of the standard height varieties Larned and Eagle change very little, but the coleoptiles of semidwarf varieties TAM 107, Karl 92, and TAM 200 actually increase in length. At 53° F, the coleoptile lengths of TAM 107, Karl

92, and TAM 200 are equal to that of Eagle, and at 40° F, they are equal to that of Larned. If a producer is faced with deep planting because of dry soil late in the planting season, choice of variety will have minimal effects on stand establishment. The same can be said for plantings made during our optimum planting times when soil temperature is already below 65° F. Plantings made in the latter part of August or early September when soil temperature is high will be the most vulnerable to poor emergence because of coleoptile length. If plantings have to be made deeper than 3.5 inches when soil temperature is high, it is advisable to use a variety that has a long coleoptile.

Coleoptile ratings reported in Table 12 are based on measurements at 75° F, which is the average soil temperature in western Kansas on Sept 1 at the 4-inch depth. Varieties with a rating of 8 had average coleoptile lengths of 2.4±.2 inches, whereas those rated 3 averaged 4.2±.2 inches. For one variety to be significantly different from another, the ratings must differ by at least 2 points.


Graphical Performance Summaries

Figures 9-12 summarize the performance of each variety standardized to the average of two check varieties. TAM 107 and lke were used as checks in the western and irrigated tests. Karl 92 and 2163 were the checks in the eastern and central tests.

The number of direct comparisons of a given variety with the check varieties has a bearing on the confidence one can place in the performance of that variety. The number beside each bar shows the number of years that variety was compared to the check varieties. In general, the greater the number of years that a variety has been tested, the greater confidence one can put in comparisons of that variety with the checks.

Symbols beside each bar indicate if a given variety was significantly greater (+) or lower (-) than the average of the check varieties. As with individual test results, small differences should not be overemphasized. Rather, relative ranking and large differences are better indicators of varietal performance.

FIGURE 9. WHEAT VARIETY PERFORMANCE SUMMARY, EASTERN REGION, 1997-2000

FIGURE 9. WHEAT VARIETY PERFORMANCE SUMMARY, EASTERN REGION, 1997-2000

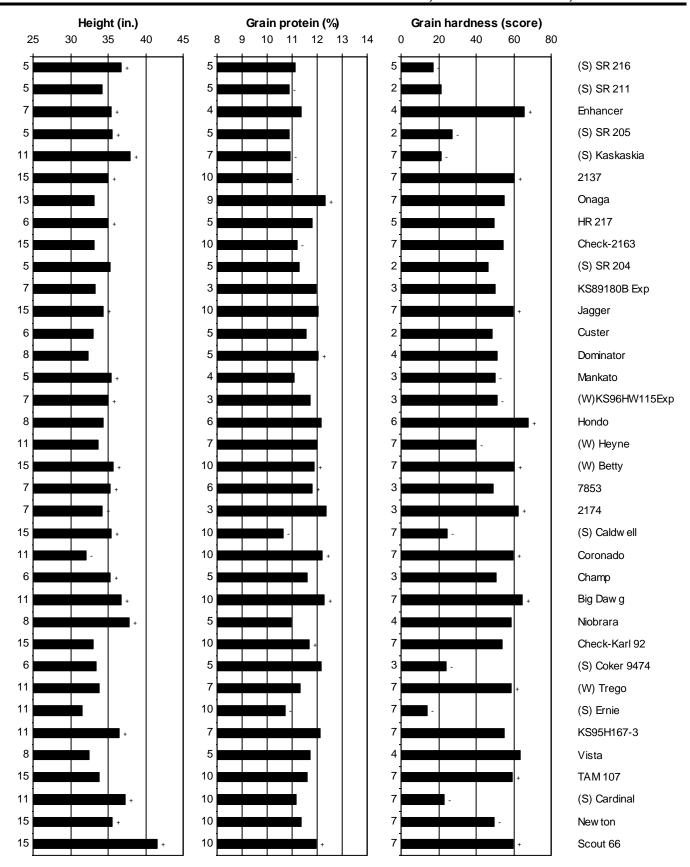
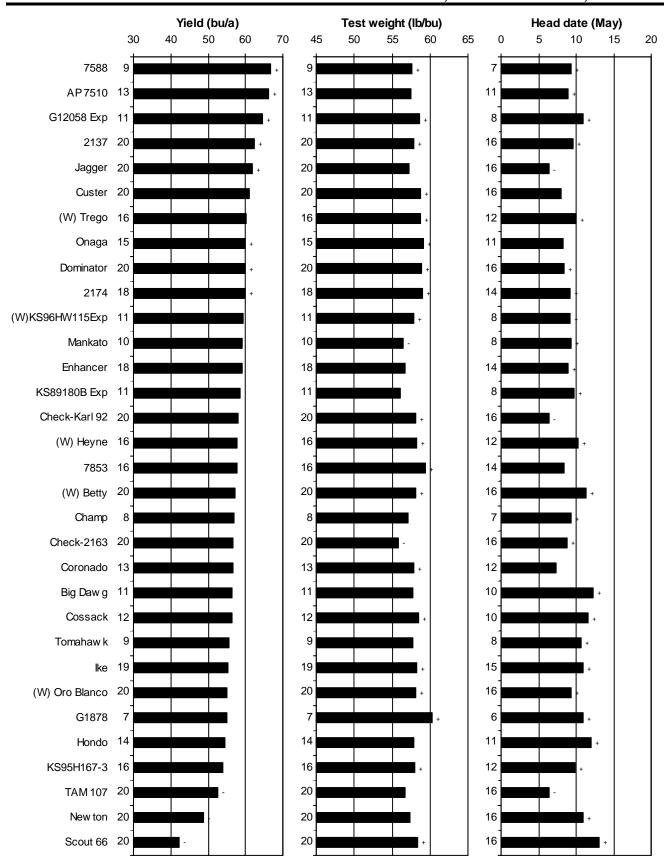



FIGURE 10. WHEAT VARIETY PERFORMANCE SUMMARY, CENTRAL REGION, 1997-2000

FIGURE 10. WHEAT VARIETY PERFORMANCE SUMMARY, CENTRAL REGION, 1997-2000

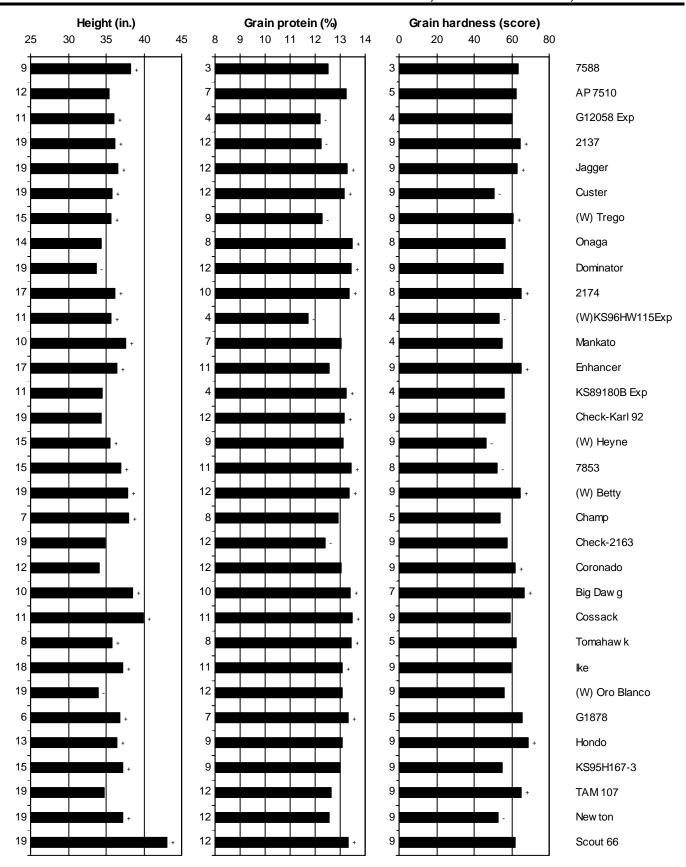


FIGURE 11. WHEAT VARIETY PERFORMANCE SUMMARY, WESTERN REGION, 1997-2000

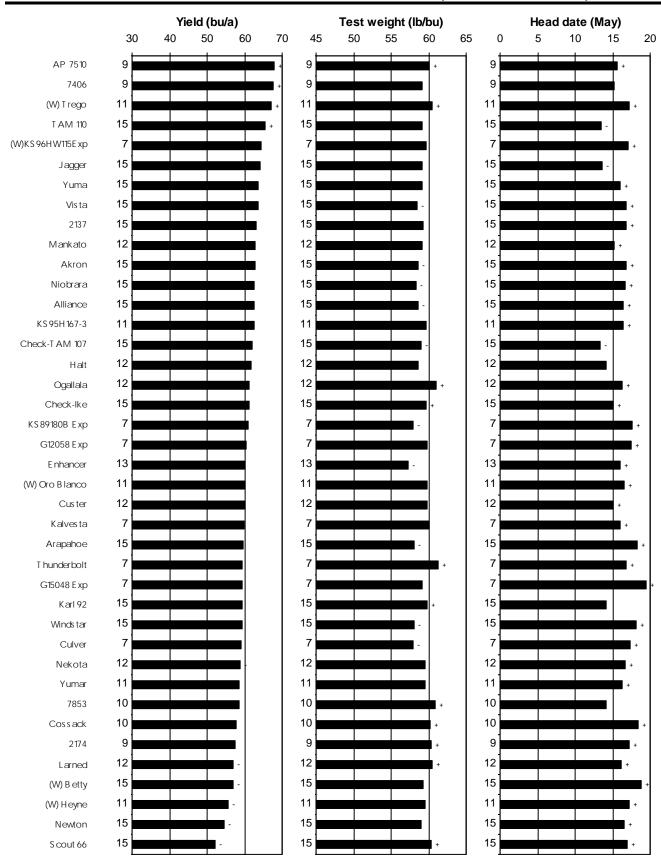


FIGURE 11. WHEAT VARIETY PERFORMANCE SUMMARY, WESTERN REGION, 1997-2000

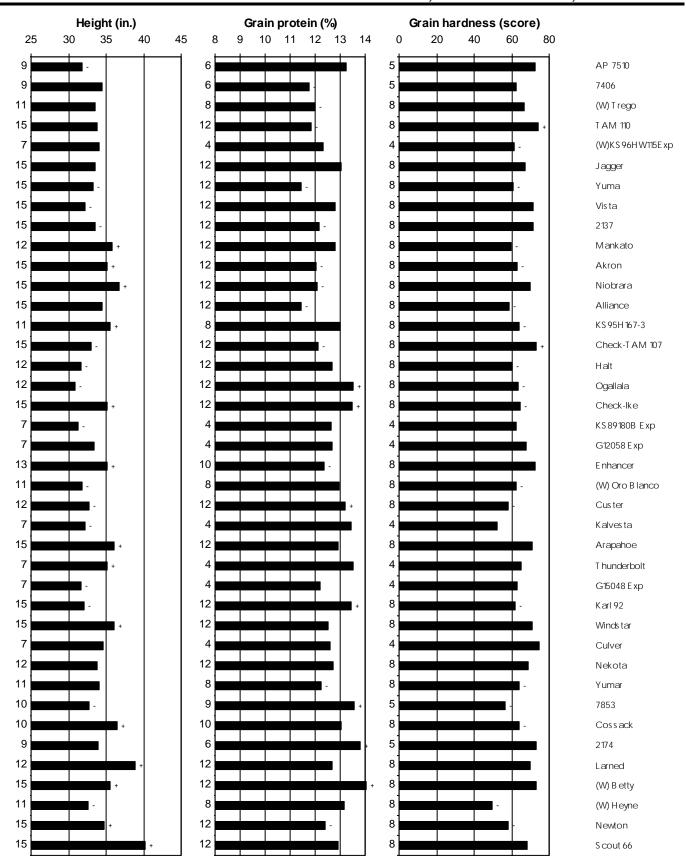
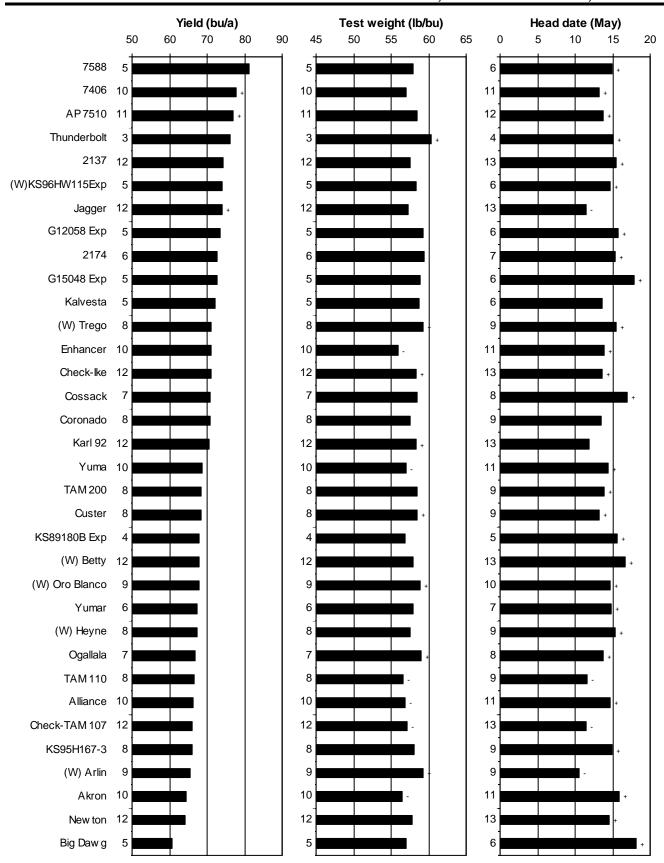



FIGURE 12. WHEAT VARIETY PERFORMANCE SUMMARY, IRRIGATED REGION, 1997-2000

FIGURE 12. WHEAT VARIETY PERFORMANCE SUMMARY, IRRIGATED REGION, 1997-2000

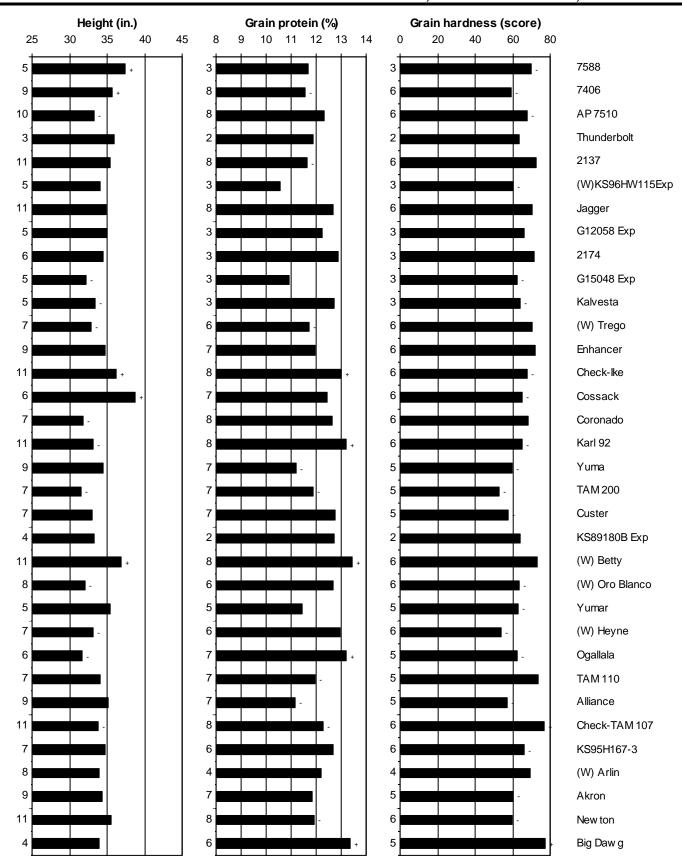


Table 5a. Yield (bushels per acre)
2000 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL ²	FR ³	LB ⁴	Avg.	Brand / Name	BR ¹	RL^2	FR ³	LB ⁴	Avg.
AgriPro						2163	34	53	56	53	49
Hondo	37	57				2174	40	50	53	47	48
AGSECO						Culver	37	54			
Onaga	42	54	50	47	48	Jagger	44	54	43	56	49
Goertzen						Karl 92	43	55	44	47	47
Enhancer	45	57	58			KS89180B Exp	42	56	55	49	50
Kalvesta	44	56	54			KS95H167-3	40	46	53	36	44
Venango	39	61	57			KS97-PO630 Exp	39	65	55	51	53
NK						Newton	38	40	54	49	45
(S) BL930390				53		Niobrara	39	55			
(S) Coker 9474				54		Scout 66	34	28	46	25	33
(S) Coker 9663				69		TAM 107	39	42	54	44	45
Polansky						TAM 302	40	45	58	59	51
Dominator	43	48				Vista	41	47			
Terra											
HR 217				50		Average	41	51	53	50	49
Public						CV (%)	6	12	5	7	
(S) Caldwell	42	49	54	54	50	LSD (0.05)**	3	7	3	4	
(S) Kaskaskia	44	62	55	56	54						
(W) Betty	45	46	49	50	47						
(W) Heyne	42	53	47	50	48						
(W) Trego	41	47	51	42	45						
(W)KS96HW115Ex	49	47	56	46	50						
2137	38	56	57	53	51						

¹ BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS.

² RL = Riley County test at Ashland Experiment Farm near Manhattan, KS.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴ LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 5b. Yield (bushels per acre)
2000 CENTRAL Kansas Winter Wheat Performance Tests.

	N	ORT	Ή		S	OUT	Ή			N	ORT	Н		S	OUT	Н	
Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN'	4 SD	⁵SU ⁶	SAvg.	Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN ⁴	SD ⁵	รัธบ ⁶	Avg.
AgriPro									(W)OK95G701Exp	77	86	82					
Hondo	57	60	59	41	22				2137	74	77	76	41	35	57	50	46
Thunderbolt	68	72	70						2163	56	75	65	42	38	47	41	42
AGSECO									2174	70	71	71	40	42	48	41	43
7853				39	37	53	34	41	Alliance	63	80	72			48		
Mankato	67	67	67						Arapahoe	60	75	68			36		
Onaga	67	73	70	43	46	47	47	46	Culver	69	78	74			45		
AWWPA									Custer	80	79	79	43	39	44	40	42
(W) Oro Blanco	63	71	67	41	25	47	38	38	lke	71	79	75	39	30	50	34	38
· · · · · · · · · · · · · · · · · · ·				• •					Jagger	73	71	72	46	32	48	46	43
General Mills	C.F.	C7	00						Karl 92	74	80	77	41	40	41	37	40
(W) GM10001	65	67	66						KS89180B Exp	69	70	70	43	26	47	41	39
(W) GM10002	63	78	71						KS95H167-3	66	66	66	44	35	40	38	39
(W) GM10003	63	66	64						KS97-PO630 Exp	76	86	81	44	52	48	53	49
(W) NuWest	37	49	43						Millennium	64	71	68					
Goertzen									Newton	61	70	65	40	23	47	37	37
Enhancer	68	70	69	46	33	53	42	43	Niobrara	64	79	72			55		
Kalvesta	72	73	72						Scout 66	44	45	45	33	18	35	26	28
Venango	73	83	78	45	38	52	47	46	TAM 107	67	72	69	48	32	53	29	40
Polansky									TAM 301				32	26	35	38	33
Dominator	73	78	76	43	32	46	42	41	TAM 302	66	78	72	42	29	45	40	39
Quantum									Vista	61	68	65			49		
7588	70	83	76	52	42	53			Wesley	68	75	72					
AP 7510	75	77	76	47	39	57			Windstar	58	65	61			41		
XH7463	76	76	76	47	41	59			Yuma	62	71	66					
Public									Yumar	65	65	65					
(W) Betty	66	76	71	44	30	46	35	39									
(W) Heyne		67	68	38		26		35	Average	67	73	70	43	34	47	40	41
(W) Nuplains		83	80						CV (%)	5	4		6	10	10	9	
(W) Trego		79	75	47	37	51	29	41	LSD (0.05)**	4	4		3	4	6	5	
(W)KS96HW115Ex			75		28	40		39									
()	· · -	. •	. •	.5													

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

² SM = Smith County test near Smith Center, KS.

³ HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

⁴ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

⁵ SD = Stafford County Dryland test at Sandyland Experiment Field near St. John, KS.

 $^{^6\,\}mathrm{SU}=\mathrm{Sumner}$ County Dryland test at Max Kolarik farm near Caldwell, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 5c. Yield (bushels per acre)
2000 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.	Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.
AgriPro						(W) Heyne	55	30		28	37
Hondo	58	40		29	42	(W) Nuplains	66	43			
Thunderbolt	65	46		36	49	(W) Trego	75	51		33	53
AGSECO						(W)KS96HW115Ex	63	44		37	48
7853				35		(W)OK95G701Exp	66	40		38	48
TAM 110	72	50		37	53	2137	59	43		38	46
AWWPA						2174	61	33		33	43
(W) Arlin				30		Akron	60	42		29	44
(W) Oro Blanco	60	44		33	45	Alliance	66	38		35	46
						Arapahoe	62	34		28	42
Drussel T81				37		Culver	60	41		30	44
				31		lke	66	45		38	50
General Mills						Jagger	60	41		31	44
(W) GM10001	62	41		31	44	Karl 92	61	38		34	44
(W) GM10002	67	39		35	47	KS89180B Exp	64	38		32	45
(W) GM10003	61	35		26	41	KS95H167-3	67	42		35	48
(W) NuWest	36	26		15	26	KS97-PO630 Exp	69	42		36	49
Goertzen						Millennium	62	43			
Enhancer	54	35		34	41	Newton	61	41		29	44
G15048 Exp	57	38		34	43	Niobrara	65	43		36	48
Kalvesta	59	45		35	47	Prairie Red	71	48		35	51
Venango	65	47		35	49	Prowers 99	41	35		26	34
Polansky						Scout 66	52	40		26	39
Dominator	63					TAM 107	69	47		35	50
Quantum						TAM 302	65	43		33	47
7406	65	48		38	50	Vista	59	52		36	49
7588	68	49		34	50	Wesley	61	41			
AP 7510	68	49		36	51	Windstar	56	35		27	39
XH1711		46				Yuma	62	42		32	46
XH3207	 75	48		34	52	Yumar	55	37		28	40
XH7463	73 77	48		37	5 <u>2</u>						
XH9806	71	49		36	52	Average	63	42		33	46
	/ 1	73		30	JZ	CV (%)	7	11		7	
Public		4-			4	LSD (0.05)**	5	6		3	
(W) Betty	62	42		35	46						

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

² TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

 $^{^3\,\}mathrm{GD}$ = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

⁴ FD = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS. (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 5d. Yield (bushels per acre)
2000 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹	TI ²	FI ³	Avg.	Brand / Name	SI ¹	TI ²	FI ³	Avg.
AgriPro					Public				
Thunderbolt		67	62		(W) Betty	63	55	52	56
AWWPA					(W) Heyne	56	52	41	49
(W) Arlin	38	53	44	45	(W) Trego	44	73	53	57
(W) Oro Blanco	48	59	48	52	(W)KS96HW115Ex	43	63	56	54
 Drussel					2137	53	65	64	61
T81			54		2174	48	58	63	56
					Akron		58	45	
General Mills	5 0	60	5 0	EC	Alliance		65	48	
(W) GM10001	52	63	53	56	lke	45	64	53	54
(W) GM10002	37	61	50	49	Jagger	60	63	54	59
(W) GM10003	42	58	56	52	Karl 92	61	61	60	61
(W) NuWest	26	42	18	29	KS89180B Exp	47	60	48	52
Goertzen					KS95H167-3	23	67	54	48
Enhancer	34	56	54	48	KS97-PO630 Exp	56	60	57	58
G15048 Exp	54	60	52	55	Newton	55	55	45	52
Kalvesta	57	57	59	58	TAM 107	45	69	52	55
Venango	45	65	57	56	TAM 302	67	66	55	63
Quantum					Yuma		57	51	
7406	50	64	63	59	Yumar		59	44	
7588	50	70	57	59					
AP 7510	65	67	58	63	Average	51	62	53	55
XH1711		71			CV (%)	19	6	9	
XH3207	64	71	55	63	LSD (0.05)**	11	5	5	
XH7463	57	70	57	61					
XH9801	66	57	59	61					
XH9806	63	67	60	63					
XH9815	54	57	62	58					

¹ SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

²TI = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS. (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6a. Yield (% of test average)
2000 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL ²	FR ³	LB ⁴	Avg.	Brand / Name	BR ¹	RL^2	FR ³	LB ⁴	Avg
AgriPro						2163	83	103	106	107	100
Hondo	90	112				2174	98	98	101	96	98
AGSECO						Culver	91	105			
Onaga	103	106	95	95	100	Jagger	107	106	82	112	102
Goertzen						Karl 92	105	108	83	95	98
Enhancer	110	111	110			KS89180B Exp	102	109	105	98	103
Kalvesta	107	109	102			KS95H167-3	98	90	101	72	90
Venango	96	119	108			KS97-PO630 Exp	96	128	104	102	108
NK						Newton	94	78	103	100	94
(S) BL930390				107		Niobrara	96	107			
(S) Coker 9474				109		Scout 66	83	55	87	51	69
(S) Coker 9663				140		TAM 107	97	81	103	89	93
Polansky						TAM 302	97	89	111	120	104
Dominator	106	93				Vista	100	91			
Terra											
HR 217				102		Average	41	51	53	50	49
Public						CV (%)	6	12	5	7	
(S) Caldwell	103	95	103	109	102	LSD (0.05)**	7	14	6	9	
(S) Kaskaskia	109	122	105	112	112						
(W) Betty	110	90	94	100	98						
(W) Heyne	103	103	88	101	99						
(W) Trego	101	91	97	84	93						
(W)KS96HW115Ex	119	93	107	92	103						
2137	94	109	107	107	104						

¹ BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS.

² RL = Riley County test at Ashland Experiment Farm near Manhattan, KS.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴ LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6b. Yield (% of test average)
2000 CENTRAL Kansas Winter Wheat Performance Tests.

	NORTH SOUTH			NORTH	SOUTH
Brand / Name	RP ¹ SM ² Avg. HV ³ RN ⁴ SD ⁵ SU	J ⁶ Avg.	Brand / Name	RP ¹ SM ² Avg.	HV ³ RN ⁴ SD ⁵ SU ⁶ Avg
AgriPro			(W)OK95G701Exp	115118117	
Hondo	86 82 84 96 65		2137	111106108	96 102 122 125 111
Thunderbolt	102 98 100		2163	83 103 93	98 113 101 104 104
AGSECO			2174	105 98 101	95 125 103 103 106
7853	92 108 114 87	7 100	Alliance	94 110102	102
Mankato	100 92 96		Arapahoe	90 103 97	76
Onaga	100 100 100 102 135 101 11	8114	Culver	104107106	97
AWWPA			Custer	119108114	102116 94 101103
(W) Oro Blanco	94 98 96 97 74 100 96	5 92	lke	106 108 107	93 90 106 86 93
			Jagger	109 98 104	107 96 102 116 105
General Mills	07 00 05		Karl 92	110109110	96 118 88 93 99
(W) GM10001	97 92 95		KS89180B Exp	104 97 100	101 75 100 104 95
(W) GM10002	95 107 101		KS95H167-3	99 90 95	103102 85 96 96
(W) GM10003	94 91 92		KS97-PO630 Exp	114117116	103 153 103 134 123
(W) NuWest	55 67 61		Millennium	96 97 97	
Goertzen			Newton	92 96 94	95 69 100 95 90
Enhancer	102 96 99 107 98 114 10	5 106	Niobrara	97 108102	118
Kalvesta	108 99 104		Scout 66	66 62 64	77 54 74 65 67
Venango	110113111 106113 112 11	9112	TAM 107	100 98 99	113 94 113 73 98
Polansky			TAM 301		74 77 74 96 80
Dominator	109107108 102 94 98 10	5100	TAM 302	99 107103	99 86 97 101 96
Quantum			Vista	92 94 93	104
7588	105113109 123123 114		Wesley	102103103	
AP 7510	112106109 109116 122		Windstar	87 89 88	88
XH7463	113103108 110122 126		Yuma	93 97 95	
Public			Yumar	97 90 93	
(W) Betty	99 104 101 103 89 99 88	3 95			
(W) Heyne		0 89	Average	67 73 70	43 34 47 40 41
(W) Nuplains	115113114		CV (%)	5 4	6 10 10 9
(W) Trego	106108107 110108 110 7	3 100	LSD (0.05)**	6 5	7 11 12 13
, ,	Ex108107107 101 83 86 10		-		
(,					

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

² SM = Smith County test near Smith Center, KS.

³ HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

⁴ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

⁵ SD = Stafford County Dryland test at Sandyland Experiment Field near St. John, KS.

⁶ SU = Sumner County Dryland test at Max Kolarik farm near Caldwell, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6c. Yield (% of test average)
2000 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	³ FD ⁴	FD ⁴ Avg. Brand / Name		EL ¹	TD ²	GD ³	FD ⁴	Avg.
AgriPro						(W) Heyne	87	71		84	81
Hondo	93	95		88	92	(W) Nuplains	106	102			
Thunderbolt	104	111		111	108	(W) Trego	120	121		102	114
AGSECO						(W)KS96HW115Ex	101	106		112	106
7853				108		(W)OK95G701Exp	106	95		116	106
TAM 110	116	118		112	115	2137	94	102		114	104
AWWPA						2174	98	80		102	93
(W) Arlin				91		Akron	96	100		89	95
(W) Oro Blanco	96	104		99	100	Alliance	106	92		107	101
						Arapahoe	100	81		87	89
Drussel T81				113		Culver	96	97		91	95
				113		lke	106	108		116	110
General Mills						Jagger	96	97		95	96
(W) GM10001	99	98		94	97	Karl 92	98	90		103	97
(W) GM10002	107	94		106	102	KS89180B Exp	103	92		98	98
(W) GM10003	98	84		81	87	KS95H167-3	107	100		105	104
(W) NuWest	58	62		44	55	KS97-PO630 Exp	110	101		108	106
Goertzen						Millennium	99	103			
Enhancer	87	83		105	91	Newton	97	99		88	94
G15048 Exp	91	90		102	94	Niobrara	104	104		110	106
Kalvesta	95	108		107	103	Prairie Red	114	115		106	112
Venango	103	112		106	107	Prowers 99	66	82		80	76
Polansky						Scout 66	83	96		78	86
Dominator	101					TAM 107	111	112		106	110
Quantum						TAM 302	103	103		100	102
7406	104	114		115	111	Vista	95	123		111	109
7588	109	117		103		Wesley	97	97			
AP 7510	108	117		109	111	Windstar	89	83		83	85
XH1711		110				Yumar		101		97	99
XH3207	120	114		105	113	Yumar	89	89		86	88
XH7463		115			116						
XH9806		117			114	Average	63	42		33	46
Public						CV (%)	7	11		7	
(W) Betty	99	100		105	102	LSD (0.05)**	8	13		8	
(VV) Delly	99	100		103	102						

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

² TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ GD = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

⁴ FD = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS. (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6d. Yield (% of test average)
2000 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹	TI ²	FI ³	Avg.	Brand / Name	SI ¹	TI ²	FI ³	Avg.
AgriPro					Public				
Thunderbolt		109	117		(W) Betty	124	89	97	103
AWWPA					(W) Heyne	110	84	77	90
(W) Arlin	76	86	82	81	(W) Trego	87	119	100	102
(W) Oro Blanco	95	95	91	94	(W)KS96HW115Ex	85	103	105	98
Drussel					2137	106	106	121	111
T81			102		2174	95	94	118	102
					Akron		94	84	
General Mills (W) GM10001	102	102	100	101	Alliance		105	90	
` ,	73	99	93	88	Ike	89	103	100	97
(W) GM10002					Jagger	119	102	101	108
(W) GM10003	83	94	105	94	Karl 92	120	99	113	111
(W) NuWest	50	68	35	51	KS89180B Exp	94	97	90	94
Goertzen					KS95H167-3	46	108	102	85
Enhancer	68	90	102	87	KS97-PO630 Exp	112	97	108	106
G15048 Exp	107	97	97	100	Newton	109	90	86	95
Kalvesta	113	93	111	106	TAM 107	88	111	98	99
Venango	90	106	107	101	TAM 302	132	107	104	115
Quantum					Yuma		93	95	
7406	98	104	118	107	Yumar		96	83	
7588	99	113	107	106					
AP 7510	128	108	110	115	Average	51	62	53	55
XH1711		115			CV (%)	19	6	9	
XH3207	126	116	104	115	LSD (0.05)**	22	7	10	
XH7463	112	114	106	111					
XH9801	131	93	111	112					
XH9806	124	108	113	115					
XH9815	108	92	117	106					

¹ SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

² TI = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 7a. Multiyear yield averages (bu/acre) Kansas Wheat Performance Tests - EAST.

	Brown		<u>nattan</u>		-Manh			klin-Ot		Labette-Parsons			
Brand / Name	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	
AgriPro													
Hondo	39	46		47	50								
AGSECO													
Onaga	48	49	52	52	57		56	58		37	45		
Goertzen													
Enhancer	51	55		53	52								
NK													
(S) Coker 9474										39	47	53	
(S) Coker 9663										51	55	60	
Polansky													
Dominator				42	45	52							
Terra													
HR 217										44	49		
Public													
(S) Caldwell	45	46	49	43	43	52	52	55	53	40	45	53	
(S) Kaskaskia	51	50		57	56		56			42	48		
(W) Betty	41	42	47	42	45	49	55	63		42	47	54	
(W) Heyne	45	48		42	48		51			35	42		
(W) Trego	41	47		38	42		54			33	41		
2137	37	45	49	45	51	57	61	68	63	42	48	55	
2163	40	46	48	46	49	56	58	64	59	39	45	55	
2174	43			44						35			
Custer													
Jagger	45	50	54	46	47	55	51	48	43	43	48	58	
Karl 92	48	51	50	47	47	52	49	55	53	36	39	48	
KS95H167-3	40	43		42	44		57			27	35		
Newton	33	41	40	37	36	39	53	52	46	36	38	44	
Niobrara	43	48	51	44	44	48							
Scout 66	37	42	45	26	27	33	42	43	40	20	28	35	
TAM 107	41	46	47	41	37	42	54	53	50	31	40	47	
Vista	37	43	46	39	41	47							
Average	42	46	49	44	46	51	55	58	52	38	44	52	

Table 7b. Multiyear yield averages (bu/acre) Kansas Wheat Performance Tests - CENTRAL.

		epubl ellevi		Smith- ith Cen		larve essto			Reno tchin			taffor t.Joh		Sumner- Caldwell			
Brand / Name	2YR	3YR	4YR	2YR	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YF	
AgriPro																	
Hondo	73	73		70	49	51		41	41								
AGSECO																	
7853					47	51	55	53	53	53	58	57	47	38	38	32	
Mankato	78	78	76	76													
Onaga	73	75		77	48	52		57	58					48			
AWWPA																	
(W) Oro Blanco	71	73	70	76	47	50	53	42	42	45	51	56	45	39	38	33	
Goertzen																	
Enhancer	77	74		79	53	57	60	49	50	51	55	53		41			
Polansky																	
Dominator	80	80	80	81	54	55	58	47	48	49	56	57		40	39		
Quantum																	
AP 7510	88	88	87	87				54	55	55							
Public																	
(W) Betty	74	75	72	77	52	53	59	42	44	46	55	57		34	36		
(W) Heyne	72	75		73	45	50		52	53		44	52		49			
(W) Trego	82	80		85	51	56		51	52		57	56		35			
2137	80	80	82	83	46	52	56	48	51	51	55	59	48	52	50	44	
2163	68	68	71	74	47	50	54	50	50	50	54	56	47	41	40	34	
2174	80			78	46	50	54	50	52	51	53	58		43	44		
Alliance	72	73	77	82							52	49					
Arapahoe	74	74	74	80							43	48	39				
Custer	86	83	80	83	35	44	52	56	59	58	46	51	40	42	49	40	
Ike	79	76	75	81	46	51	54	43	44		51	50	42	31	33	28	
Jagger	75	77	72	73	55	57	62	51	54	55	58	64	52	49	48	40	
Karl 92	80	82	78	81	49	54	57	51	52	51	45	48	39	38	37	34	
KS95H167-3	78	76		75	37	45		48	49		41	44		40			
Newton	67	65	62	73	47	49	47	38	38	38	52	53	42	30	28	24	
Niobrara	75	76	77	84							58	58	48				
Scout 66	53	54	57	55	27	34	39	30	33	34	41	44	35	27	27	23	
TAM 107	70	72	71	77	37	44	46	48	48	48	51	54	43	24	26	22	
TAM 301																	
Vista	72	70	72	75							46	40	35				
Windstar	67	65	70	72							51	48					
Yuma	76	76	73	81													
Yumar	74	76		75													
Average	75	75	74	78	47	51	54	48	49	49	53	54	44	40	40	33	

Table 7c. Multiyear yield averages (bu/acre) Kansas Wheat Performance Tests - WEST.

	Ellis-Hays			Tho	mas-C	olby	Greelev-	Tribun	9)Finney-Garden City				
Brand / Name	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	
AgriPro													
Hondo													
AGSECO													
7853										47	48	48	
Mankato							79	70	64				
TAM 110	76	78	77	59	64	64	77	70		52	51	52	
AWWPA													
(W) Arlin										44	46	46	
(W) Oro Blanco	66	70		54	61		79			45	46		
Drussel													
T81							82			50			
Goertzen													
Enhancer	68	71		50	58		78	69		45	45	47	
Polansky													
Dominator	71	76	74										
Quantum													
7406	72	75		57	67	68							
AP 7510	78	79		60	67	66							
Public													
(W) Betty	64	67	66	52	57	57	66	58		46	46	47	
(W) Heyne	64	68		41	52		72			42	44		
(W) Trego	79	79		64	67		86			52	50		
2137	66	72	71	53	61	62	76	68	64	51	51	53	
2174	65	72	70	46						46			
Akron	69	72	73	52	60	62	82	73	68	45	44	47	
Alliance	72	73	72	54	61	61	84	71		50	46	48	
Arapahoe	66	68	69	47	57	57	79	69	64	43	44	46	
lke	72	72	71	52	59	58	75	66	59	52	52	51	
Jagger	72	75	75	50	61	63	77	70	64	48	50	51	
Karl 92	68	74	70	53	60	58	72	62	58	49	48	47	
KS95H167-3	70	73		53	60		81			51	50		
Newton	65	65	61	51	57	53	74	63	56	42	42	43	
Niobrara	71	73	71	56	64	63	77	68	63	52	49	49	
Scout 66	56	61	61	47	53	54	59	56	50	38	37	39	
TAM 107	74	75	72	55	61	60	76	68	61	49	48	48	
Vista	68	72	72	63	66	64	83	71	67	50	47	50	
Windstar	64	67	68	46	55	58	79	68		43	43	45	
Yuma	71	74	74	55	64	64	78	69	64	46	48	49	
Yumar	67	70		50	58		74			43	45		
Average	69	71	70	52	60	60	76	67	62	47	47	47	

Table 7d. Multiyear yield averages (bu/acre) Kansas Wheat Performance Tests - IRR.

	Staffo		<u>John</u>	Tho	mas-C	<u>olby</u>	Finne	en City	
Brand / Name	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR
AWWPA									
(W) Arlin				61			60	44	51
(W) Oro Blanco	62			71			56	43	
Drussel									
T81							63		
Goertzen									
Enhancer	59	65		68			63		
Quantum									
7406	72			75	81	82	69		
AP 7510	82			76	79	80	63	53	
Public									
(W) Betty	68	71		63	66		57		
(W) Heyne	72			63			52		
(W) Trego	62			79			61		
2137	70	76	63	73	77	78	69	55	61
2174	63	67							
Akron				71	76		56		
Alliance				74	78		55		
Ike	61	68	57	74	77	77	63	48	55
Jagger	80	73	59	73	79	79	65	51	58
Karl 92	74	69	56	68	70	71	68	51	57
KS95H167-3	46			74			63		
Newton	72	72	57	65	68	69	52	38	44
TAM 107	58	48	38	72	77	79	63	47	52
Yuma				71	78	79	59	43	51
Yumar				70			56		
Average	67	66	53	70	74	75	61	47	52

Table 8a. Test weight (pounds per bushel)
2000 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL^2	FR ³	LB ⁴	Avg.	Brand / Name	BR ¹	RL^2	FR ³	LB 4	.B ⁴ Avg.	
AgriPro						2163	54	58	58	58	58	
Hondo	60	60				2174	60	61	59	60	60	
AGSECO						Culver	58	58				
Onaga	61	59	60	59	59	Jagger	59	59	59	59	59	
Goertzen						Karl 92	59	59	58	59	59	
						KS89180B Exp	59	56	56	57	56	
Enhancer	58	58	58			KS95H167-3	59	60	58	59	60	
Kalvesta	59	60	58			KS97-PO630 Exp	58	58	59	59	59	
Venango	59	58	59			Newton	58	60	58	59	59	
NK						Niobrara	58	57				
(S) BL930390				57		Scout 66	58	59	58	59	59	
(S) Coker 9474				59		TAM 107	56	58	57	57	58	
(S) Coker 9663				58		TAM 302	56	57	56	56	56	
Polansky						Vista	60	57				
Dominator	60	60										
Terra						Average	58	59	58	58	59	
HR 217				58		CV (%)	1	2	1	1		
						LSD (0.05)**	1	2	1	1		
Public												
(S) Caldwell	58	58	57	58	58							
(S) Kaskaskia	59	59	58	59	59							
(W) Betty	60	58	58	59	58							
(W) Heyne	59	60	57	59	59							
(W) Trego	58	62	58	59	60							
(W)KS96HW115Ex	59	59	58	59	59							
2137	56	59	58	59	59							

¹ BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS.

² RL = Riley County test at Ashland Experiment Farm near Manhattan, KS.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 8b. Test weight (pounds per bushel)
2000 CENTRAL Kansas Winter Wheat Performance Tests.

	N	ORT	Ή		S	OUT	Ή			N	ORT	H		S	OUT	Н	
Brand / Name	RP ¹	SM ²	Avg.	HV ³	³ RN ⁴	SD	⁵su'	Avg.	Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN ⁴	SD ⁵	ัรบ ⁶	Avg
AgriPro									(W)OK95G701Exp	57	60	59					
Hondo	56	58	57	63	52				2137	56	58	57	63	53	55	61	58
Thunderbolt	57	59	58						2163	53	56	54	61	52	53	59	56
AGSECO									2174	56	59	58	64	55	54	62	59
7853				65	55	56	63	60	Alliance	53	58	56			55		
Mankato	54	56	55						Arapahoe	55	58	56			54		
Onaga	55	58	56	64	57	54	63	60	Culver	56	59	57			52		
AWWPA									Custer	57	58	57	63	55	56	62	59
(W) Oro Blanco	56	58	57	64	52	58	61	59	Ike	56	58	57	63	54	57	61	59
			<u> </u>	<u> </u>					Jagger	54	58	56	62	52	53	61	57
General Mills		- 0							Karl 92	56	58	57	63	56	53	62	58
(W) GM10001	57		58						KS89180B Exp	53	56	55	62	48	55	59	56
(W) GM10002	57	60	58						KS95H167-3	56	59	58	63	57	52	62	58
(W) GM10003	52		54						KS97-PO630 Exp	56	59	57	64	55	58	62	60
(W) NuWest	53	56	54						Millennium	56	58	57					
Goertzen									Newton	56	58	57	64	52	56	60	58
Enhancer	52	56	54	61	50	54	59	56	Niobrara	55	58	56			55		
Kalvesta	56	59	57						Scout 66	56	58	57	62	55	55	61	58
Venango	56	59	58	64	54	58	63	60	TAM 107	54	58	56	61	54	54	59	57
Polansky									TAM 301				62	52	54	60	57
Dominator	57	59	58	64	54	57	63	60	TAM 302	53	57	55	61	49	53	58	55
Quantum									Vista	55	57	56			55		
7588	54	58	56	62	54	54			Wesley	53	57	55					
AP 7510	56	59	58	63	51	56			Windstar	53	57	55			50		
XH7463	55	58	57		54	56			Yuma	55	57	56					
Public									Yumar	54	58	56					
(W) Betty	57	58	57	64	53	57	61	59									
(W) Heyne		58	57	64		52		58	Average	55	58	57	63	53	55	61	58
(W) Nuplains		60	59	J-7 					CV (%)	2	2		0	3	5	1	
(W) Trego		60	58	64	56	57	62	59	LSD (0.05)**	1	1		0	2	3	1	
(W)KS96HW115E>			58		54	57		58									
(**)1100011VV110L/	. 50	00	00	02	U-T	O1	01	00									

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

 $^{^2}$ SM = Smith County test near Smith Center, KS.

³ HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

 $^{^4\,\}text{RN}$ = Reno County test at South Central Experiment Field near Hutchinson, KS.

⁵ SD = Stafford County Dryland test at Sandyland Experiment Field near St. John, KS.

 $^{^6\,\}mathrm{SU}=\mathrm{Sumner}$ County Dryland test at Max Kolarik farm near Caldwell, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 8c. Test weight (pounds per bushel)
2000 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg	Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.
AgriPro						(W) Heyne	61	56		58	58
Hondo	60	56		58	58	(W) Nuplains	61	58			
Thunderbolt	62	59		60	60	(W) Trego	62	58		59	59
AGSECO						(W)KS96HW115Ex	61	56		58	58
7853				59		(W)OK95G701Exp	63	58		60	60
TAM 110	60	57		57	58	2137	60	53		57	57
AWWPA						2174	61	56		59	58
(W) Arlin				58		Akron	59	54		57	57
(W) Oro Blanco	61	58		59	59	Alliance	59	56		57	57
						Arapahoe	59	55		57	57
Drussel				50		Culver	58	55		57	57
T81				58		Ike	61	56		58	58
General Mills						Jagger	60	54		57	57
(W) GM10001	61	56		59	59	Karl 92	62	56		59	59
(W) GM10002	60	58		58	59	KS89180B Exp	59	54		56	56
(W) GM10003	57	50		58	55	KS95H167-3	60	57		58	58
(W) NuWest	53	50		53	52	KS97-PO630 Exp	60	56		58	58
Goertzen						Millennium	58	56			
Enhancer	58	51		55	55	Newton	60	55		57	57
G15048 Exp	59	55		58	57	Niobrara	59	56		56	57
Kalvesta	61	58		60	60	Prairie Red	60	56		57	58
Venango	62	57		58	59	Prowers 99	60	56		59	58
Polansky						Scout 66	62	58		58	59
Dominator	61					TAM 107	60	56		57	58
Quantum						TAM 302	57	52		55	55
7406	60	55		58	58	Vista	60	57		57	58
7588	60	55		58	57	Wesley	58	53			
AP 7510	61	57		58	59	Windstar	58	55		56	56
XH1711		57				Yuma	60	54		57	57
XH3207		57		F0	50	Yumar	60	55		58	58
XH7463	61 60	5 <i>1</i>		58 58	59 57						
						Average	60	56		58	58
XH9806	60	56		57	58	CV (%)	1	2		2	
Public				_		LSD (0.05)**	1	1		1	
(W) Betty	60	56		58	58						

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

 $^{^2}$ TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ GD = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

⁴ FD = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 8d. Test weight (pounds per bushel)
2000 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹	TI ²	FI ³	Avg.	Brand / Name	SI ¹	TI ²	FI ³	Avg.
AgriPro					Public				
Thunderbolt		59	60		(W) Betty	55	57	58	57
AWWPA					(W) Heyne	52	56	58	55
(W) Arlin	55	58	57	57	(W) Trego	57	58	59	58
(W) Oro Blanco	56	57	58	57	(W)KS96HW115Ex	55	57	56	56
					2137	55	56	57	56
Drussel T81			57		2174	58	56	58	57
			51		Akron		55	56	
General Mills					Alliance		56	55	
(W) GM10001	55	57	59	57	lke	53	56	57	55
(W) GM10002	51	59	57	56	Jagger	54	53	56	54
(W) GM10003	54	51	54	53	Karl 92	55	57	58	57
(W) NuWest	53	54	53	53	KS89180B Exp	53	55	55	54
Goertzen					KS95H167-3	54	57	59	57
Enhancer	53	51	54	53	KS97-PO630 Exp	55	57	57	56
G15048 Exp	55	57	59	57	Newton	57	56	56	56
Kalvesta	58	57	59	58	TAM 107	52	56	57	55
Venango	56	58	59	58	TAM 302	55	54	54	54
Quantum					Yuma		56	57	
7406	53	55	57	55	Yumar		57	58	
7588	54	57	58	56					
AP 7510	54	57	57	56	Average	55	56	57	56
XH1711		58			CV (%)	4	2	2	
XH3207	56	57	57	57	LSD (0.05)**	2	1	1	
XH7463	54	55	56	55	· ·				
XH9801	57	57	58	57					
XH9806	54	55	57	55					
XH9815	53	56	58	56					

¹ SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

² TI = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁴ ST = Stevens County test at Jim Kramer farm near Hugoton, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9a. Heading (days +/- Scout 66, Scout 66 heading listed as date in May) 2000 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL^2	FR ³	LB ⁴	l Avg.	Brand / Name	BR ¹	RL ²	FR ³	LB ⁴	Α
AgriPro						2163			-0.8	-5.0	-;
Hondo						2174			-2.0	-3.8	-
AGSECO						Culver					
Onaga			-2.8	-6.8	-4.8	Jagger			-6.8	-11.0	-
Goertzen						Karl 92			-4.8	-8.0	-(
Enhancer			-2.8			KS89180B Exp			-2.3	-3.3	-
Kalvesta			-2.8			KS95H167-3			-2.8	-4.0	-
Venango			-0.3			KS97-PO630 Exp			-1.5	-3.8	-
NK						Newton			-0.5	-2.0	-
(S) BL930390				-4.3		Niobrara					
(S) Coker 9474				-7.5		Scout 66			2.8	2.0	2
(S) Coker 9663				-8.3		TAM 107			-6.3	-8.3	-
Polansky						TAM 302			0.3	-2.5	-
Dominator						Vista					
Terra											
HR 217				-2.8		Average			-2.0	-4.7	-;
Public						CV (%)			1.6	0.7	
(S) Caldwell			-2.3	-5.8	-4.0	LSD (0.05)**			0.6	1.0	
(S) Kaskaskia			-2.0	-3.0	-2.5						
(W) Betty			2.3	-3.5	-0.6						
(W) Heyne			-1.3	-4.5	-2.9						
(W) Trego			-1.0	-3.0	-2.0						
(W)KS96HW115Ex			-3.0	-3.8	-3.4						
2137			-1.3	-2.8	-2.0						

¹ BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS. No maturity notes available for 2000.

 $^{^2}$ RL = Riley County test at Ashland Experiment Farm near Manhattan, KS. No maturity notes available for 2000.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9b. Heading (days +/- Scout 66, Scout 66 heading listed as date in May) 2000 CENTRAL Kansas Winter Wheat Performance Tests.

	NORTH		so	UTH			NORTH		so	UTH	
Brand / Name	RP ¹	HV ²	RN ³	SD ⁴	Avg.	Brand / Name	RP ¹	HV ²	RN ³	SD ⁴	Avg.
AgriPro						(W)OK95G701Exp	-3.8				
Hondo	-2.0	0.3	0.3			2137	-4.0	-2.8	-4.5	-2.5	-3.3
Thunderbolt	-1.8					2163	-4.5	-4.0	-5.5	-3.0	-4.2
AGSECO						2174	-4.8	-4.0	-4.8	-2.5	-3.8
7853		-4.5	-4.5	-5.8	-4.9	Alliance	-2.5			-2.5	
Mankato	-3.8					Arapahoe	-0.8			2.3	
Onaga	-4.0	-5.0	-6.8	-3.3	-5.0	Culver	-1.8			-0.5	
AWWPA						Custer	-3.8	-6.8	-7.0	-5.3	-6.3
(W) Oro Blanco	-2.5	-3.5	-4 0	-2.3	-33	Ike	-2.8	-1.8	-2.3	-3.0	-2.3
		0.0	7.0	2.0		Jagger	-5.8	-7.3	-6.8	-6.5	-6.8
General Mills						Karl 92	-7.5	-5.8	-7.3	-6.0	-6.3
(W) GM10001	-0.3					KS89180B Exp	-2.8	-3.0	-3.0	-2.3	-2.8
(W) GM10002	-0.3					KS95H167-3	-3.8	-3.0	-3.8	-3.8	-3.5
(W) GM10003	-2.3					KS97-PO630 Exp	-3.8	-2.8	-3.3	-2.8	-2.9
(W) NuWest	8.0					Millennium	-0.8				
Goertzen						Newton	-2.3	-1.3	-1.8	-2.0	-1.7
Enhancer	-2.5	-4.0	-4.8	-3.8	-4.2	Niobrara	-1.3			-1.0	
Kalvesta	-3.8					Scout 66	13.8	7.0	10.8	4.5	7.4
Venango	-2.8	-1.3	-2.0	-0.5	-1.3	TAM 107	-6.5	-7.3	-8.3	-6.5	-7.3
Polansky						TAM 301		-1.8	-2.0	-0.5	-1.4
Dominator	-4.8	-5.3	-5.5	-4.5	-5.1	TAM 302	-3.5	-1.0	-2.3	-0.5	-1.3
Quantum						Vista	-3.0			-0.3	
7588	-3.8	-3.0	-5.8	-2.3	-3.7	Wesley	-3.3				
AP 7510	-3.8	-3.3	-5.3	-3.5	-4.0	Windstar	-1.0			8.0	
XH7463	-1.8	-6.8	-6.5	-4.5	-5.9	Yuma	-2.5				
	1.0	0.0	0.0	7.0		Yumar	-3.5				
Public	4.0	4.0	0.5	4.0							
(W) Betty	-1.8	-1.3	-2.5	1.3	-0.8	Average	-2.8	-3.4	-4.2	-2.4	-3.3
(W) Heyne	-3.5	-2.0	-3.0	-0.8	-1.9	CV (%)	3.8	0.4	12.6	2.3	
(W) Nuplains	-1.0					LSD (0.05)**	0.5	0.5	1.0	0.9	
(W) Trego	-2.5		-4.3								
(W)KS96HW115Ex	-4.0	-2.8	-4.0	-0.8	-2.5						

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

² HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

³ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

 $^{^4\,\}mathrm{SD}=\mathrm{Stafford}$ County Dryland test at Sandyland Experiment Field near St. John, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9c. Heading (days +/- Scout 66, Scout 66 heading listed as date in May) 2000 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.	Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.
AgriPro						(W) Heyne	-1.0	1.8		-1.5	-0.3
Hondo	1.8	2.8		0.5	1.7	(W) Nuplains	3.0	4.0			
Thunderbolt	-1.0	0.3		-1.5	-0.8	(W) Trego	-0.5	2.3		-0.8	0.3
AGSECO						(W)KS96HW115Ex	-2.3	1.5		-1.5	-0.8
7853				-2.5		(W)OK95G701Exp	-1.0	0.5		-1.5	-0.7
TAM 110	-4.3	-2.5		-3.3	-3.3	2137	-1.5	0.5		-1.5	-0.8
AWWPA						2174	-1.3	0.5		-1.8	-0.8
(W) Arlin				-3.3		Akron	-1.5	1.0		-1.3	-0.6
(W) Oro Blanco	-1.3	0.5			-0.8	Alliance	-0.5	0.3		-1.5	-0.6
Drussel	1.0	0.0		1.0		Arapahoe	2.0	2.5		1.0	1.8
				4.0		Culver	0.3	1.3		-0.5	
T81				-1.8		Ike		-2.3		-1.5	
General Mills						Jagger		-2.3		-2.8	
(W) GM10001	0.0	1.5		-1.0	0.2	Karl 92	-3.8	-2.3		-2.0	-2.7
(W) GM10002	2.3	1.3		-0.5	1.0	KS89180B Exp	-1.0	2.0		-0.5	0.2
(W) GM10003		-0.5		-1.3	-1.1	KS95H167-3	-1.8	0.5		-1.5	-0.9
(W) NuWest	5.3	7.8		1.3	4.8	KS97-PO630 Exp	-1.0	1.8		-1.3	-0.2
Goertzen						Millennium	3.5	2.8			
Enhancer	-1.5	0.3		-1.8	-1.0	Newton	-1.3	-0.3		-1.3	-0.9
G15048 Exp	3.0	4.0		1.5	2.8	Niobrara	0.5	0.5		-0.8	0.1
Kalvesta	-3.0	0.0		-1.5	-1.5	Prairie Red	-4.5	-2.8		-2.8	-3.3
Venango	-0.8	1.5		-0.5	0.1	Prowers 99	1.5	2.8		0.0	1.4
Polansky						Scout 66		10.8		10.5	
Dominator	-2.8					TAM 107		-2.8		-3.0	-3.5
Quantum						TAM 302	0.5	2.0		0.3	0.9
7406	-2.8	2.0		2.0	-2.3	Vista	0.0	0.0		-0.5	-0.2
7406 7588		1.3			-2.3	Wesley	0.3	1.5			
AP 7510	-1.0 -2.8				-0.3	Windstar	1.5	2.0		0.5	1.3
XH1711		-0.6 -1.3		-1.5	-1.7	Yuma	-1.3	0.3		-1.5	-0.8
				 4.0	 1 1	Yumar	-2.0	1.3		-1.5	-0.8
XH3207	-1.3			-1.3							
XH7463	-3.0				-1.9	Average	-0.8	0.8		-1.2	-0.4
XH9806	-1.8	0.0		-1.5	-1.1	CV (%)	8.1	6.0		5.4	
Public						LSD (0.05)**	8.0	0.8		0.6	
(W) Betty	2.3	5.3		-0.3	2.4						

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

² TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ GD = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

 $^{^4\,\}text{FD}$ = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9d. Heading (days +/- Newton, Newton heading listed as date in May) 2000 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹	TI ²	FI ³	Avg.	Brand / Name	SI ¹	TI ²	FI ³	Avg.
AgriPro					Public				
Thunderbolt		1.5	0.3		(W) Betty	1.8	3.3	1.3	2.1
AWWPA					(W) Heyne	-1.0	1.0	0.3	0.1
(W) Arlin	-5.5	-1.3	-2.8	-3.2	(W) Trego	2.3	2.0	0.5	1.6
(W) Oro Blanco	-0.8	1.3	0.3	0.3	(W)KS96HW115Ex	-0.3	2.0	-0.5	0.4
Drussel					2137	1.5	2.0	0.3	1.3
T81			-1.0		2174	1.0	1.8	-0.3	0.8
Company Mills					Akron		1.0	0.3	
General Mills (W) GM10001	3.8	1.3	1.5	2.2	Alliance		1.0	0.0	
(W) GM10002	1.5	1.8	1.3	1.5	Ike	0.0	-0.8	-0.5	-0.4
(W) GM10003	2.0	1.8	0.3	1.3	Jagger	-6.0	-1.5	-2.0	-3.2
(W) NuWest	6.0	6.8	3.3	5.3	Karl 92	-5.0	-0.8	-1.3	-2.3
(W) Nuvvest	0.0	0.0	5.5	5.5	KS89180B Exp	-0.8	2.0	0.8	0.7
Goertzen					KS95H167-3	1.3	0.0	-0.3	0.3
Enhancer	-1.0	0.3	-0.5	-0.4	KS97-PO630 Exp	0.3	2.3	0.5	1.0
G15048 Exp	4.5	4.5	2.3	3.8	Newton	4.3	10.0	10.0	8.1
Kalvesta	-2.5	0.3	0.0	-0.8	TAM 107	-5.5	-1.5	-2.8	-3.3
Venango	1.5	1.8	0.3	1.2	TAM 302	-0.5	2.0	0.5	0.7
Quantum					Yuma		0.3	-0.3	
7406	-2.3	-1.3	-0.8	-1.4	Yumar		0.8	0.0	
7588	-1.3	2.0	0.5	0.4					
AP 7510	-0.8	-0.3	-0.3	-0.4	Average	-0.4	0.9	0.0	0.2
XH1711		-1.3			CV (%)	3.2	0.6	5.1	
XH3207	-0.8	0.3	8.0	0.1	LSD (0.05)**	1.3	0.9	0.6	
XH7463	-1.8	-0.3	-0.5	-0.8					
XH9801	-3.3	-1.3	-0.5	-1.7					
XH9806	-1.5	0.5	0.3	-0.3					
XH9815	-0.5	-0.3	-0.8	-0.5					

¹ SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

 $^{^2\,\}text{TI}$ = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10a. Plant height (inches)
2000 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL^2	FR ³	LB ⁴	Avg.	Brand / Name	BR ¹	RL^2	FR ³	LB ⁴	Avg.
AgriPro						2163	26	37	33	37	33
Hondo	24	33				2174	26	37	34	39	34
AGSECO						Culver	25	37			
Onaga	27	37	32	37	33	Jagger	30	37	35	36	34
Goertzen						Karl 92	26	37	33	36	33
Enhancer	28	37	37			KS89180B Exp	25	37	31	39	33
Kalvesta	25	35	32			KS95H167-3	26	40	34	40	35
Venango	25	37	34			KS97-PO630 Exp	24	38	32	38	33
NK						Newton	26	39	35	38	34
(S) BL930390				37		Niobrara	27	41			
(S) Coker 9474				38		Scout 66	28	43	44	43	40
(S) Coker 9663				40		TAM 107	28	37	34	40	35
Polansky						TAM 302	25	37	33	38	33
Dominator	25	37				Vista	25	30			
Terra											
HR 217				37		Average	26	37	34	39	34
Public						CV (%)	3		3	4	
(S) Caldwell	29	37	33	40	35	LSD (0.05)**	1		1	2	
(S) Kaskaskia	29	41	37	40	37						
(W) Betty	28	35	35	41	35						
(W) Heyne	27	35	32	37	33						
(W) Trego	25	37	33	38	33						
(W)KS96HW115Ex	27	37	36	38	34						
2137	25	39	35	39	34						

¹ BR = Brown County test at Cornbelt Experiment Field near Powhattan, KS.

² RL = Riley County test at Ashland Experiment Farm near Manhattan, KS.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10b. Plant height (inches)
2000 CENTRAL Kansas Winter Wheat Performance Tests.

	N	ORT	Ή		S	OUT	Ή			N	ORT	Н		S	OUT	Н	
Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN	4 SD	⁵su'	SAvg.	Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN	SD ⁵	รัธบ ⁶	Avg.
AgriPro									(W)OK95G701Exp	36	36	36					
Hondo	36	38	37	34	42				2137	36	36	36	33	44	36	37	37
Thunderbolt	38	38	38						2163	36	36	36	33	44	33	39	37
AGSECO									2174	37	37	37	34	44	34	40	38
7853				35	44	40	39	40	Alliance	37	38	37			38		
Mankato	38	40	39						Arapahoe	37	38	37			37		
Onaga	35	35	35	34	43	30	39	36	Culver	36	38	37			38		
AWWPA									Custer	37	38	38	35	43	33	40	38
(W) Oro Blanco	35	35	35	32	40	31	40	36	lke	37	38	37	34	44	38	44	40
								_	Jagger	36	37	37	36	42	34	41	38
General Mills	20	40	40						Karl 92	36	36	36	33	40	33	40	36
(W) GM10001	39	40	40						KS89180B Exp	35	36	35	33	40	34	37	36
(W) GM10002	35		35						KS95H167-3	37	39	38	35	46	35	44	40
(W) GM10003	36	36	36						KS97-PO630 Exp	34	36	35	32	42	31	38	36
(W) NuWest	39	40	39						Millennium	40	41	40					
Goertzen									Newton	36	39	38	34	42	36	41	38
Enhancer	35	37	36	35	42	34	44	39	Niobrara	38	40	39			42		
Kalvesta	35	35	35						Scout 66	41	44	42	39	46	42	59	47
Venango	37	38	37	34	41	35	41	38	TAM 107	36	39	37	34	42	33	39	37
Polansky									TAM 301				31	36	33	37	34
Dominator	35	34	34	33	40	32	37	36	TAM 302	35	36	36	34	41	36	40	37
Quantum									Vista	35	36	35			32		
7588	39	38	38	35	46	36			Wesley	36	36	36					
AP 7510	35	36	35	33	44	37			Windstar	37	39	38			35		
XH7463	36	37	36	35	44	36			Yuma	36	36	36					
									Yumar	37	37	37					
Public	20	20	20	25	40	20	20	20									
(W) Betty	38	38	38	35	43	38	39	39	Average	36	37	37	34	42	35	41	38
(W) Heyne	35	35	35	33	44	31	41	37	CV (%)	3	4		3	3	8		
(W) Nuplains	36	37	37			 07			LSD (0.05)**	1	2		1	2	4		
(W) Trego	35	36	36	34	41	37	38	37									
(W)KS96HW115Ex	35	36	36	34	42	34	40	37									

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

² SM = Smith County test near Smith Center, KS.

³ HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

 $^{^4\,\}text{RN}$ = Reno County test at South Central Experiment Field near Hutchinson, KS.

⁵ SD = Stafford County Dryland test at Sandyland Experiment Field near St. John, KS.

 $^{^6\,\}mathrm{SU}=\mathrm{Sumner}$ County Dryland test at Max Kolarik farm near Caldwell, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10c. Plant height (inches)
2000 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	¹ Avg.	Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.
AgriPro					J	(W) Heyne	34	28		32	31
Hondo	34	28		32	31	(W) Nuplains	33	27			
Thunderbolt	36	30		34	34	(W) Trego	34	29		32	32
AGSECO						(W)KS96HW115Ex	35	28		33	32
7853				33		(W)OK95G701Exp	32	26		32	30
TAM 110	36	29		34	33	2137	33	28		32	31
AWWPA						2174	34	29		33	32
(W) Arlin				32		Akron	35	29		34	33
(W) Oro Blanco	32	 27		30	30	Alliance	35	28		34	32
. ,	32	21		30	30	Arapahoe	36	30		34	33
Drussel						Culver	35	30		34	33
T81				31		Ike	36	29		35	33
General Mills						Jagger	34	29		32	31
(W) GM10001	37	31		33	34	Karl 92	33	27		31	30
(W) GM10002	31	26		31	29	KS89180B Exp	33	26		30	30
(W) GM10003	34	27		29	30	KS95H167-3	37	29		34	33
(W) NuWest	37	30		33	33	KS97-PO630 Exp	32	27		32	30
Goertzen						Millennium	37	33			
Enhancer	36	29		33	33	Newton	36	30		33	33
G15048 Exp	33	27		32	30	Niobrara	37	31		36	34
Kalvesta	32	28		31	30	Prairie Red	34	28		32	31
Venango	34	29		33	32	Prowers 99	39	32		36	36
Polansky						Scout 66	43	34		39	38
Dominator	32					TAM 107	35	28		33	32
	32					TAM 302	33	29		31	31
Quantum						Vista	32	28		31	30
7406	35	29		33	32	Wesley	32	28			
7588	38	30		34	34	Windstar	36	30		34	33
AP 7510	33	27		31	30	Yuma	34	27		31	31
XH1711		29				Yumar	34	28		31	31
XH3207	33	27		31	30						
XH7463	35	29		34	32	Average	34	29		33	32
XH9806	33	29		34	32	CV (%)	4	5		3	
Public					_	LSD (0.05)**	2	2		1	
(W) Betty	36	31		33	33						

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

² TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

⁴ FD = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10d. Plant height (inches)
2000 IRRIGATED Kansas Winter Wheat Performance Tests.

	SI ¹	TI ²	FI ³	Avg.	Brand / Name	SI ¹	TI ²	FI ³	Avg.
AgriPro					Public				
Thunderbolt		33	37		(W) Betty	41	35	36	37
AWWPA					(W) Heyne	37	30	35	34
(W) Arlin	37	32	37	35	(W) Trego	33	30	34	32
(W) Oro Blanco	35	28	36	33	(W)KS96HW115Ex	38	30	36	34
 Drussel					2137	38	31	37	35
T81			35		2174	34	32	36	34
					Akron		31	33	
General Mills (W) GM10001	36	35	38	36	Alliance		34	38	
` ,					Ike	37	33	37	36
(W) GM10002	34	29	35	32	Jagger	41	31	35	35
(W) GM10003	35	31	34	33	Karl 92	36	31	36	34
(W) NuWest	30	33	37	33	KS89180B Exp	34	29	36	33
Goertzen					KS95H167-3	32	31	37	33
Enhancer	35	32	36	34	KS97-PO630 Exp	34	30	36	34
G15048 Exp	35	30	34	33	Newton	35	33	37	35
Kalvesta	36	31	35	34	TAM 107	36	32	36	34
Venango	35	32	37	35	TAM 302	38	31	35	35
Quantum					Yuma		32	36	
7406	38	33	37	36	Yumar		32	36	
7588	40	35	38	38					
AP 7510	38	30	36	35	Average	36	31	36	34
XH1711		33			CV (%)	6	6	5	
XH3207	38	30	36	34					
XH7463	36	32	37	35	LSD (0.05)**	3	2	2	
XH9801	36	30	37	34					
XH9806	37	29	36	34					
XH9815	35	32	36	34					

¹ SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

 $^{^2\,\}text{TI}$ = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 11. Disease and lodging notes from 2000 Kansas Wheat Performance Tests.

D 1 / 2 !	Le	eaf Ru	st	BYD ¹	PM ²	SLB ³	LOD ⁴	Daniel (N	Le	eaf Ru	st	BYD ¹	PM ²	SLB ³	LOD
Brand / Name	RP	RN	SU	LB	RN	LB	RN	Brand / Name	RP	RN	SU	LB	RN	LB	RN
AgriPro								Public							
Hondo	2	2			1		10	(S) Caldwell				6		6	
Thunderbolt	2							(S) Kaskaskia				6		5	
AGSECO								(W) Betty	8	9	8	6	3	2	45
7853		8	8		5		18	(W) Heyne	7	7	8	8	5	4	11
Mankato	8							(W) Nuplains	2						
Onaga	3	5	8	7	6	5	5	(W) Trego	1	2	1	8	7	4	10
TAM 110								(W)KS96HW115E	9	9	9	8	8	7	10
								(W)OK95G701Ex	3						
AWWPA								2137	8	7	7	6	4	5	6
(W) Arlin								2163	6	6	7	5	2	5	4
(W) Oro Blanco	9	9	8		8		14	2174	5	5	3	5	2	3	5
Drussel								Akron							
T81								Alliance	8						
General Mills								Arapahoe	3						
	•							Culver	7						
(W) GM10001	8							Custer	5	6	7		3		23
(W) GM10002	3							lke	8	7	7		6		18
(W) GM10003	3							Jagger	8	8	9	6	7	3	49
(W) NuWest	9							Karl 92	8	8	9	6	3	3	25
Goertzen								KS89180B Exp	1	1	1	6	7	3	6
Enhancer	7	8	8		6		65	KS95H167-3	1	1	1	8	9	4	5
G15048 Exp								KS97-PO630 Exp	2	1	1	5	6	3	6
Kalvesta .	9							Millennium	2						
Venango	6	5	5		7		6	Newton	9	9	9	8	6	9	8
NK								Niobrara	6						
(S) BL930390				4		9		Prairie Red							
` '				6 5				Prowers 99			 7		 7	 E	 59
(S) Coker 9474 (S) Coker 9663				4		3 2		Scout 66 TAM 107	8	8 9	7 9	8 7	2	5 3	38
				4				TAM 301	9	9	9 7		1		39
Polansky								TAM 302	2	6	6	 6	6	 9	39 6
Dominator	9	8	8		4		20	Vista	7	0	0	0	O	9	0
Quantum								Wesley	8						
7406								Windstar	2						
7588	1	1			5		8	Yuma	8						
AP 7510	3	3			1		5	Yumar	6						
XH1711								- una	U						
XH3207															
XH7463	4	4			1		6	Average	5	6	6	6	5	4	18
XH9801								CV (%)	11	7		13		17	84
XH9806								LSD (0.05)**	1	1		1		1	18
XH9815															
		-	_												
Terra				_		_									
HR 217				8		3									

Disease ratings by Bob Bowden, Ext. Plant Pathologist; 1 = best, least disease reaction, 9 = poorest, most disease reaction. Single-location ratings should be interpreted with care. A number of ratings from many locations should be used to develop a more complete picture of disease and/or lodging reaction.

- 46 -

complete picture of disease and/or lodging reaction.

¹BYD = Barley yellow dwarf virus

²PM = Powdery mildew

³SLB = Speckled leaf blotch

⁴LOD = Lodging, %

Table 12. Planted seed characteristics, coleoptile lengths, and Hessian fly ratings.

Brand / Name	1000 Seed weight (grams)	Test weight (lb/bu)	per lb.	Col. length (1-9) ¹	fly	Brand / Name	1000 Seed weight (grams)		per lb.		fly
AgriPro						Public					
Hondo	40.5	60.0	11.2	6	Н	(S) Caldwell	34.1	59.2	13.3	8	R
Thunderbolt	36.3	61.5	12.5	6	S	(S) Kaskaskia	31.6	58.6	14.4	6	R
AGSECO						(W) Betty	38.5	59.3	11.8	7	S
7853	38.6	62.3	11.8	7	S	(W) Heyne	35.6			6	S
Mankato	31.1		14.6	8	S	(W) Nuplains	30.3			7	S
Onaga	29.8		15.2	6	R	(W) Trego	34.2		13.3	6	Н
TAM 110	37.9		12.0	5	S	(W)KS96HW115E			14.5	7	S
AWWPA						(W)OK95G701Ex	•		20.2	6	Н
(W) Arlin	35.4	60.3	12.8	6	S	2137	35.8		12.7	7	Н
(W) Oro Blanco	31.1		14.6	8	S	2163	29.1		15.6	7	R
Drussel	51.1	00.0	14.0			2174	30.6			5	Н
				_	_	Akron	39.7			6	S
T81	32.8	59.2	13.8	7	<u>S</u>	Alliance	28.6			8	Н
General Mills						Arapahoe	32.0			7	R
(W) GM10001	30.9	59.3	14.7	5	S	Culver	41.6			6	Н
(W) GM10002	37.1	61.4		5	S	Custer	42.1			8	S
(W) GM10003	38.3		11.8	7	Н	lke	33.9			7 6	R S
(W) NuWest	29.8	60.9	15.2	8	S	Jagger Karl 92	35.1 37.3			7	S
Goertzen						KS89180B Exp	29.5		15.4	7	H
Enhancer	35.6	57.6	12.7	5	Н	KS97-PO630 Exp			13.4	6	H
Venango	33.1	54.8	13.7	7	Н	KS95H167-3	37.5		12.1	6	S
G15048 Exp	31.2	57.5	14.5	8	Н	Millennium	32.5			7	R
Kalvesta	46.7	59.1	9.7	7	S	Newton	40.4			6	S
NK						Niobrara	30.7			6	S
(S) BL930390	39.3	55.5	11.5		S	Prairie Red	39.0			5	S
(S) Coker 9474	38.8		11.7	4	H	Prowers 99	43.5			3	S
(S) Coker 9663	42.3		10.7	3	S	Scout 66	33.5			3	S
Polansky			-			TAM 107	31.4			5	S
Dominator	36.5	61.4	12 /	8	R	TAM 301	35.1	56.3	12.9	9	S
	30.5	01.4	12.4	- 0		TAM 302	31.3	54.5	14.5	5	R
Quantum				_	_	Vista	33.0	59.9	13.8	8	R
7406		59.8		7	S	Wesley	30.6	52.5	14.8	7	S
7588		55.8		6	S	Windstar	29.9	57.4	15.2	7	S S
AP 7510		57.8		7	S	Yuma		60.2		8	S
XH1711		59.1	11.0	7	S	Yumar		63.1		7	S
XH3207		60.0 59.2	8.6	7	S S	Maximum		63.1		9	
XH7463 XH9801			9.4 11.0	7 7	S	Minimum		52.5		3	
XH9806		60.8 59.6	11.5	7	S	Average	35.8	58.6	12.9	6	
XH9815		59.6		7	S						
	42.5	59.9	10.7		<u>ა</u>						
Terra				_							
HR 217				8							

¹ Coleoptile length measured at 75 degrees F, which is the average soil temperature at 4" in western Kansas on September 1. Coleoptile rating of 3 is long and is equal to about 4.2", a rating of 8 is short and is equal to about 2.4". See discussion of coleoptile length on page 12. Ratings provided by T. Joe Martin, Kansas State University Agricultural Research Center - Hays.

² Hessian fly ratings by J. Hatchett, USDA; S = majority of plants susceptible, H = mixture of susceptible and resistant plants (heterogenous), R = majority of plants resistant. Tested with the Great Plains Hessian fly.

Protein Content

Samples of grain from each variety harvested from Kansas Wheat Performance Tests are submitted annually for analysis of protein content, kernel hardness, and kernel weight and other tests. Screening for protein and other analyses are conducted by the staff at the U.S. Grain Marketing and Production Research Center in Manhattan, Kansas. Because of the time requirement for obtaining analyses, protein results presented below are for the previous year's tests.

Table 13. Protein (% at 14% moisture) 1999 Kansas Winter Wheat Performance Tests.

	East							t	Irrigated									
Brand / Name	BR	RL	LB /	Avg.	RP	Н۷	RN	SD	Avg.	EL	TD	GD	FD	Avg.	ST			Avg.
AgriPro																		
(S) Marion			10.5															
(S) Patton	11.2																	
Big Dawg			11.8			10.6	15.0	11.8		13.2					12 6	12.2		
Coronado			11.3				13.7									12.5		127
Hondo	12.8						14.0									12.0		12.7
Ogallala	12.0				12.2		14.0			13.2	122	126	15.9	13.5		127	14.2	
Thunderbolt													15.2				12.3	
AGSECO																		
7853			11.6			11 3	14.5	11 6					15.5					
Mankato		12.6			12.3					12.5	11.0		14.9					
Onaga			11.4				13.4			12.5	11.0	10.9	14.5		12.9			
TAM 110	12.5	13.1	11.4	12.3	13.4	11.2	13.4			11 0	10.7	11 1	14.1		12.9		14.3	
TAWITO										11.9	10.7	11.1	14.1	12.0		12.0	14.3	
AWWPA																		
(W) Arlin													14.3				13.1	
(W) Oro Blanco					12.5	10.0	13.3	11.5	11.8	12.9	11.1	11.2	15.3	12.6	11.3	12.4	12.8	12.2
Drussel																		
T81												10.9	13.4				13.0	
General Mills																		
(W) NuWest		13.8			13.1					12.5	11.2							
Goertzen																		
Cossack	13.7	14.1			13.8	11.0	14.2	13.3	13.1	12.9	11.2	11.2	15.7	12.8	12.1	11.8	12.8	12.2
Enhancer	11.4	12.7					12.8						14.6					11.5
G15011 Exp													14.9					11.7
G15048 Exp													14.0					11.0
Kalvesta					13.5								15.2					12.8
Venango	13.0	12.8				10.1	12.6	11.1	11.5				14.9					12.3
NK																		
(S) Coker 9474			10.9															
(S) Coker 9543			11.4															
(S) Coker 9663			9.6															
(O) COVEL 2002			5.0															
Pioneer																		
(S) 2540			10.0															
Polansky																		
Dominator		14.0			13.1	10.7	13.5	12.4	12.4	12.8	11.5							
						. 5.7	. 5.5											

Table 13. Protein (% at 14% moisture) 1999 Kansas Winter Wheat Performance Tests.

				West					Irrigated									
Brand / Name	BR		ast LB	Avg.	RP		entra RN		Avg.	EL				Avg.	ST			Avg.
•																		
Quantum					44.0										400		400	
7406					11.3			10.9			10.9							11.4
7588					13.2			10.4			10.5							11.7
AP 7510					12.6		14.2				11.1				11.0	12.1	12.7	11.9
XH9806											10.7	11.9						
Terra																		
(S) SR 216	10.9	12.3	11.2	11.5	11.7	10.1	12.4	11.1	11.3	12.2	11.6	11.8	14.0	12.4	11.4	12.0	12.2	11.9
HR 217			10.5		13.3	10.9	13.7	11.9	12.5	13.4	11.5	11.1	15.3	12.8	12.2	12.7	11.8	12.2
Public																		
(S) Caldwell	11.2	12.4	10.3	11.3														
(S) Cardinal	11.2	12.4	10.2	11.3														
(S) Ernie	10.7	11.8	10.9	11.1														
(S) Kaskaskia	11.2	12.2	10.6	11.3														
(W) Betty	11.7	13.2	11.3	12.1	13.0	10.6	13.6	12.8	12.5	13.6	12.2	12.0	16.4	13.6	12.4	12.8	14.2	13.1
(W) Heyne	13.1	14.0	11.6	12.9	13.5	10.9	13.9	11.6	12.5	13.0	12.2	10.9	15.4	12.9	12.5	10.7	13.9	12.4
(W) Trego	11.8	12.7	11.8	12.1	11.8	9.9	12.9	11.1	11.4	11.7	10.2	10.0	13.7	11.4	11.1	11.0	12.4	11.5
(W)KS96HW115Exp	12.5	12.9	10.9	12.1	11.5	9.7	12.7	10.0	11.0	12.0	10.4	10.0	14.9	11.8	10.5	10.6	10.8	10.6
2137			10.8				3 12.9							12.6				11.7
2163			10.6				12.6											
2174			11.4				13.5			14.3	11.8	11.4	15.4	13.2	12.7	12.8	13.4	13.0
Akron														11.9			10.8	
Alliance					13.3			9.7						11.0			11.3	
Arapahoe					11.8			11.0						12.7				
Culver	11 9	13.3			13.6			11.9						12.1				
Custer			11.2				13.3							12.4			12.5	
Halt								12.0						12.4				
lke					13.7	10.6	 3 14.1	12.0						12.4	11 0	12.4		12 g
	12.2	12.0	10.9	12.2			3 13.5							12.5				12.5
Jagger Karl 92			10.9				3 13.8 3 13.8							12.5				
																		13.7
KS89180B Exp			11.1				13.7							12.2		12.9		
KS95H167-3	13.0	13.9	12.8	13.2			13.7							12.9				12.7
KS96HW94 Exp							12.5	9.9		_	_			11.9	10.6	11.1	10.5	10.7
Larned														12.5				
Nekota					13.3									12.2				
Newton			11.1	12.0			2 12.9							11.9	10.2	12.2	11.9	11.4
Niobrara		12.8			11.4			10.5						12.0				
Scout 66	12.8	14.3	11.6	12.9			3 15.0			12.9	11.4	12.2	14.2	12.7				
TAM 107	11.3	13.1	11.7	12.0	12.6	11.8	3 12.0	11.7	12.0	11.5	11.2	11.1	14.2	12.0	11.1	12.6	14.1	12.6
TAM 200																11.4	13.9	
Vista	12.2	13.5			12.1			10.8		12.2	11.1	11.5	16.6	12.9				
Wesley					12.8					12.3	11.4	13.3						
Windstar					12.7			11.4		12.2	11.2	12.1	15.0	12.6				
Yuma					11.1					11.7	9.8	10.7	13.9	11.5		10.7	11.9	
Yumar					12.0					12.1	10.5	10.6	14.6	12.0		11.4	10.9	
Test Average	12.1	13.2	11.1	_	12.7	10.7	13.5	11.4		12.4	11.1	11.1	14.8		11.5	5 12.	1 12.8	3

For those interested in accessing crop performance testing information electronically, try visiting our World Wide Web site. Most of the information contained in this publication is available for viewing or downloading. The URL is http://www.ksu.edu/kscpt.

Excerpts from the UNIVERSITY RESEARCH POLICY AGREEMENT WITH COOPERATING SEED COMPANIES*

Permission is hereby given to Kansas State University to test varieties and/or hybrids designated on the attached entry forms in the manner indicated in the test announcements. I certify that seed submitted for testing is a true sample of the seed being offered for sale.

I understand that all results from Kansas Crop Performance Tests belong to the University and the public and shall be controlled by the University so as to produce the greatest benefit to the public. Performance data may be used in the following ways: 1) Tables may be reproduced in their entirety provided the source is referenced and data are not manipulated or reinterpreted; 2) Advertising statements by an individual company about the performance of its entries may be made as long as they are accurate statements about the data as published, with no reference to other companies' names or cultivars. In both cases, the following must be included with the reprint or ad citing the appropriate publication number and title: "See the official Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress 825 '1998 Kansas Performance Tests with Soybean Varieties', or the Kansas Crop Performance Test website, http://www.ksu.edu/kscpt, for details. Endorsement or recommendation by Kansas State University is not implied."

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name of work, Kansas State University, and the date the work was published.

CONTRIBUTORS

MAIN STATION, MANHATTAN

Kraig Roozeboom, Associate Agronomist (Senior Author)

Robert Bowden, State Extension Plant Pathologist

Leroy Brooks, State Extension Entomologist
Mary Knapp, KSU State Climatologist
Allen Fritz, KSU Wheat Breeder

EXPERIMENT FIELDS

Mark Claassen, Hesston W. Barney Gordon, Scandia William Heer, Hutchinson Keith Janssen, Ottawa Larry Maddux, Powhattan Victor Martin, St. John

RESEARCH CENTERS

Patrick Evans, Colby James Long, Parsons T. Joe Martin, Hays Alan Schlegel, Tribune Merle Witt, Garden City

Others providing information for this report:

W.W. Bockus, Plant Pathology
J.H. Hatchett, USDA Entomology
Ray Lamond, Agronomy
P.J. McCluskey, Grain Science & Industry

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan 66506 SRP 857 July 2000

It is the policy of Kansas State University Agricultural Experiment Station and Cooperative Extension Service that all persons shall have equal opportunity and

access to its educational programs, services, activities, and materials without regard to race, color, religion, national origin, sex, age, or disability. Kansas State

University is an equal opportunity organization. These materials may be available in alternative formats. 8.5M