

Survey of Agricultural Water Microbial Quality on Kansas and Missouri Farms Olivia C. Haley¹, Yeqi Zhao¹, Joshua M. Maher^{2,3}, Sara E. Gragg^{2,3}, Valentina Trinetta^{2,3}, Manreet Bhullar^{1,3}, Londa Nwadike^{2,4,5}

¹Department of Horticulture and Natural Resources, Kansas State University, ²Food Science Institute, Kansas State University, ³Department of Animal Sciences and Industry, Kansas State University, ⁴Kansas State Research and Extension, Kansas State University, ⁵University of Missouri Extension, University of Missouri

Introduction

The Food Safety Modernization Act (FSMA) Produce Safety **Rule (PSR)** states that all agricultural water **must** be of safe and adequate sanitary quality for its intended use (§112.41)

What is Agricultural Water?

Plant

Agricultural water is water that is intended or likely to contact the edible portions of produce or food contact surfaces during growing (production) or during/after harvest (post-harvest). The PSR outlines three common sources of agricultural water: ground water, surface water, and municipal water.

Microbial Risk

Municipal Water is water that is treated and monitored by a local water utility

Ground Water is water that is found beneath Earth's surface (ex. wells, aquifers)

Surface Water is water that is found or stored on the Earth's surface (ex. rivers, creeks, ponds supply tanks)

How do we determine microbial water quality?

The bacteria generic Escherichia coli (E. coli) is used as an indicator of water quality because it is a bacteria commonly found in animal feces!

Objective

Determine the prevalence of *E. coli* in agricultural water sources on fresh produce farms in Kansas and Missouri